89 research outputs found

    Purification,characterization and crystallization in two crystal forms of bovine cyclophilin 40

    Get PDF
    The purification and crystallization of two different crystal forms of the two-domain protein bovine cyclophilin 40 is reported. Tetragonal crystals grown in methyl pentanediol belong to space group P4(2)22 with unit-cell parameters a = 94.5, c = 118.3 Angstrom. Long thin needles grown from PEG belong to space group C2 with unit-cell parameters a = 125.71, b = 47.3, c = 74.6 Angstrom, beta = 93.90 degrees. The N-terminal 170 amino acids have significant homology with the well characterized human cyclophilin A. The C-terminal domain is largely made up of three copies of the tetratricopeptide repeat motif thought to be involved in mediating protein-protein interactions. Cyclophilins are frequently found as domains in larger multidomain proteins. To date, only X-ray structures of single-domain cyclophilins have been reported, and this work provides the first example of the purification and crystallization of a larger protein containing a cyclophilin domain

    Cross-calibration of CO- versus dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies

    Get PDF
    We present a cross-calibration of CO- and dust-based molecular gas masses at z ≤ 0.2. Our results are based on a survey with the IRAM 30-m telescope collecting CO(1–0) measurements of 78 massive (logM⋆/M⊙> 10) galaxies with known gas-phase metallicities and with IR photometric coverage from Wide-field Infrared Survey Explorer(WISE; 22 μm) and Herschel Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, 500μm). We find a tight relation (∼0.17 dex scatter) between the gas masses inferred from CO and dust continuum emission, with a minor systematic offset of 0.05 dex. The two methods can be brought into agreement by applying a metallicity-dependent adjustment factor (∼0.13 dex scatter). We illustrate that the observed offset is consistent with a scenario in which dust traces not only molecular gas but also part of the HI reservoir, residing in the H2-dominated region of the galaxy. Observations of the CO(2–1) to CO(1–0) line ratio for two-thirds of the sample indicate a narrow range in excitation properties, with a median ratio of luminosities ⟨R21⟩ ∼ 0.64. Finally, we find dynamical mass constraints from spectral line profile fitting to agree well with the anticipated mass budget enclosed within an effective radius, once all mass components (stars, gas, and dark matter) are accounted for

    Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.

    Get PDF
    Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate. Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation. Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined. Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks. Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics

    RNAi-Mediated Knock-Down of Arylamine N-acetyltransferase-1 Expression Induces E-cadherin Up-Regulation and Cell-Cell Contact Growth Inhibition

    Get PDF
    Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has not been established. In this study, we have knocked down NAT1 in the colon adenocarcinoma cell-line HT-29 and found a marked change in cell morphology that was accompanied by an increase in cell-cell contact growth inhibition and a loss of cell viability at confluence. NAT1 knock-down also led to attenuation in anchorage independent growth in soft agar. Loss of NAT1 led to the up-regulation of E-cadherin mRNA and protein levels. This change in E-cadherin was not attributed to RNAi off-target effects and was also observed in the prostate cancer cell-line 22Rv1. In vivo, NAT1 knock-down cells grew with a longer doubling time compared to cells stably transfected with a scrambled RNAi or to parental HT-29 cells. This study has shown that NAT1 affects cell growth and morphology. In addition, it suggests that NAT1 may be a novel drug target for cancer therapeutics

    The Effects of Copper Pollution on Fouling Assemblage Diversity: A Tropical-Temperate Comparison

    Get PDF
    BACKGROUND: The invasion of habitats by non-indigenous species (NIS) occurs at a global scale and can generate significant ecological, evolutionary, economic and social consequences. Estuarine and coastal ecosystems are particularly vulnerable to pollution from numerous sources due to years of human-induced degradation and shipping. Pollution is considered as a class of disturbance with anthropogenic roots and recent studies have concluded that high frequencies of disturbance may facilitate invasions by increasing the availability of resources. METHODOLOGY/PRINCIPAL FINDINGS: To examine the effects of heavy metal pollution as disturbance in shaping patterns of exotic versus native diversity in marine fouling communities we exposed fouling communities to different concentrations of copper in one temperate (Virginia) and one tropical (Panama) region. Diversity was categorized as total, native and non-indigenous and we also incorporated taxonomic and functional richness. Our findings indicate that total fouling diversity decreased with increasing copper pollution, whether taxonomic or functional diversity is considered. Both native and non-indigenous richness decreased with increasing copper concentrations at the tropical site whereas at the temperate site, non-indigenous richness was too low to detect any effect. CONCLUSIONS/SIGNIFICANCE: Non-indigenous richness decreased with increasing metal concentrations, contradicting previous investigations that evaluate the influence of heavy metal pollution on diversity and invasibility of fouling assemblages. These results provide first insights on how the invasive species pool in a certain region may play a key role in the disturbance vs. non-indigenous diversity relationship

    Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability

    Get PDF
    Corbicula fluminea is considered one of the most important non-native invasive species (NIS) in aquatic systems mainly due to its widespread distribution and ecological and economic impacts. This species is known to negatively affect native bivalves, also with severe effects on biodiversity and ecosystem functioning. Throughout an exhaustive bibliographic survey and with the aid of Geographic Information Systems tools, this study tracks the species dispersion from its native range, including the description of important physical and environmental barriers. Additional analyses were conducted to examine possible influences of latitudinal/ temperature gradients on important traits (e.g. life span, maximum and mean body length, growth at the end of first year). Altitude and winter minimum temperature appear to be delaying the invasion worldwide, but it seems inevitable that the species will spread across the globe. Latitude and summer temperature show a relationship with growth and life span. Overall, the information gathered in this review may be relevant to forecast future distribution patterns of this NIS, and to anticipate the possible implementation of effective management measures. Moreover, it may constitute a valuabletool inthe prediction of population responses to an increasingly changing environment.This research was supported by FCT (Portuguese Foundation for Science and Technology), through a PhD grant attributed to D. Crespo (SFRH/BD/80252/2011), a post-doc grant attributed to S. Leston (SFRH/BPD/91828/2012) and M Dolbeth (SFRH/BPD/41117/2007) and BIOCHANGED project (PTDC/MAR/111901/2009), subsidized by the European Social Fund and MCTES (Ministério da Ciência, Tecnologia e Ensino Superior) National Funds, through the POPH (Human Potential Operational Programme), QREN (National Strategic Reference Framework) and COMPETE (Programa Operacional Factores de Competitividade).info:eu-repo/semantics/publishedVersio

    Multiple Advantageous Amino Acid Variants in the NAT2 Gene in Human Populations

    Get PDF
    Background: Genetic variation at NAT2 has been long recognized as the cause of differential ability to metabolize a wide variety of drugs of therapeutic use. Here, we explore the pattern of genetic variation in 12 human populations that significantly extend the geographic range and resolution of previous surveys, to test the hypothesis that different dietary regimens and lifestyles may explain inter-population differences in NAT2 variation. Methodology/Principal Findings: The entire coding region was resequenced in 98 subjects and six polymorphic positions were genotyped in 150 additional subjects. A single previously undescribed variant was found (34T>C; 12Y>H). Several aspects of the data do not fit the expectations of a neutral model, as assessed by coalescent simulations. Tajima's D is positive in all populations, indicating an excess of intermediate alleles. The level of between-population differentiation is low, and is mainly accounted for by the proportion of fast vs. slow acetylators. However, haplotype frequencies significantly differ across groups of populations with different subsistence. Conclusions/Significance: Data on the structure of haplotypes and their frequencies are compatible with a model in which slow-causing variants were present in widely dispersed populations before major shifts to pastoralism and/or agriculture. In this model, slow-causing mutations gained a selective advantage in populations shifting from hunting-gathering to pastoralism/agriculture. We suggest the diminished dietary availability of folates resulting from the nutritional shift, as the possible cause of the fitness increase associated to haplotypes carrying mutations that reduce enzymatic activity. © 2008 Luca et al

    From arylamine N-acetyltransferase to folate-dependent acetyl CoA hydrolase : impact of folic acid on the activity of (HUMAN)NAT1 and its homologue (MOUSE)NAT2

    Get PDF
    Acetyl Coenzyme A-dependent N-, O- and N,O-acetylation of aromatic amines and hydrazines by arylamine N-acetyltransferases is well characterised. Here, we describe experiments demonstrating that human arylamine N-acetyltransferase Type 1 and its murine homologue (Type 2) can also catalyse the direct hydrolysis of acetyl Coenzyme A in the presence of folate. This folate-dependent activity is exclusive to these two isoforms; no acetyl Coenzyme A hydrolysis was found when murine arylamine N-acetyltransferase Type 1 or recombinant bacterial arylamine N-acetyltransferases were incubated with folate. Proton nuclear magnetic resonance spectroscopy allowed chemical modifications occurring during the catalytic reaction to be analysed in real time, revealing that the disappearance of acetyl CH3 from acetyl Coenzyme A occurred concomitantly with the appearance of a CH3 peak corresponding to that of free acetate and suggesting that folate is not acetylated during the reaction. We propose that folate is a cofactor for this reaction and suggest it as an endogenous function of this widespread enzyme. Furthermore, in silico docking of folate within the active site of human arylamine N-acetyltransferase Type 1 suggests that folate may bind at the enzyme's active site, and facilitate acetyl Coenzyme A hydrolysis. The evidence presented in this paper adds to our growing understanding of the endogenous roles of human arylamine N-acetyltransferase Type 1 and its mouse homologue and expands the catalytic repertoire of these enzymes, demonstrating that they are by no means just xenobiotic metabolising enzymes but probably also play an important role in cellular metabolism. These data, together with the characterisation of a naphthoquinone inhibitor of folate-dependent acetyl Coenzyme A hydrolysis by human arylamine N-acetyltransferase Type 1/murine arylamine N-acetyltransferase Type 2, open up a range of future avenues of exploration, both for elucidating the developmental role of these enzymes and for improving chemotherapeutic approaches to pathological conditions including estrogen receptor-positive breast cancer

    Complete genes may pass from food to human blood

    Get PDF
    Our bloodstream is considered to be an environment well separated from the outside world and the digestive tract. According to the standard paradigm large macromolecules consumed with food cannot pass directly to the circulatory system. During digestion proteins and DNA are thought to be degraded into small constituents, amino acids and nucleic acids, respectively, and then absorbed by a complex active process and distributed to various parts of the body through the circulation system. Here, based on the analysis of over 1000 human samples from four independent studies, we report evidence that meal-derived DNA fragments which are large enough to carry complete genes can avoid degradation and through an unknown mechanism enter the human circulation system. In one of the blood samples the relative concentration of plant DNA is higher than the human DNA. The plant DNA concentration shows a surprisingly precise log-normal distribution in the plasma samples while non-plasma (cord blood) control sample was found to be free of plant DNA
    corecore