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Abstract

Our bloodstream is considered to be an environment well separated from the outside world and the digestive tract.
According to the standard paradigm large macromolecules consumed with food cannot pass directly to the circulatory
system. During digestion proteins and DNA are thought to be degraded into small constituents, amino acids and nucleic
acids, respectively, and then absorbed by a complex active process and distributed to various parts of the body through the
circulation system. Here, based on the analysis of over 1000 human samples from four independent studies, we report
evidence that meal-derived DNA fragments which are large enough to carry complete genes can avoid degradation and
through an unknown mechanism enter the human circulation system. In one of the blood samples the relative
concentration of plant DNA is higher than the human DNA. The plant DNA concentration shows a surprisingly precise log-
normal distribution in the plasma samples while non-plasma (cord blood) control sample was found to be free of plant DNA.
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Introduction

We are constantly exposed to foreign DNA from various sources

like benign or malicious microbes in and on our body, pollens in

the inhaled air and as the largest amount with the daily food

supply. DNA molecules are ubiquitous in large numbers in all raw

and unprocessed food. Depending on the extent of processing,

various fractions of DNA molecules of varying size may be present

in the consumed product, even in processed food such as corn

chips and chocolate [1].

Uptake and fate of foreign DNA ingested with the daily food

intake in the gastrointestinal tract of mammals is not a completely

understood topic. Though exogenous nucleotides are essential at

least for maintaining host immunity to allergenic tissues and

restoring specific immune responses to foreign antigens [2], the

amount of DNA in food is relatively low compared to other

constituents and does not have significant nutritional value, hence

nutritional studies rarely deal with this issue. The final step of

uptake of nucleotides in the epithelium of the gastrointestinal tract

is a relatively well understood complex process [3]. In contrast, the

comprehension of the degradation process of long chains of DNA

and possible uptake of larger fragments face many methodological

challenges and very few studies have been conducted on the

digestion of food-derived DNA within the 68 m long digestive

tract of adult humans [1]. Animal feeding studies have demon-

strated that a minor amount of fragmented dietary DNA may

resist the digestive process (for a recent review see [4]) and there

are sporadic reports in the literature claiming that orally

administered small fragments of bacterial DNA [5] or plant

RNA [6] can transgress the intestinal barrier, but no studies have

explored the question if large DNA segments can pass from

natural food intake to the circulatory system.

Blood is not free of DNA. White blood cells have nuclei that

contain genetic material, which gives the dominant part of the

DNA in a full blood sample. Beyond the DNA contained in the

white blood cells the cell free blood plasma contains DNA, too.

This is the so called circulating cell-free DNA (cfDNA) which is an

ideal target to test the presence of foreign DNA, since most of the

human ‘‘background’’ is removed by the cellular fraction.

Characteristics of Cell-free DNA
Circulating cell-free DNA (cfDNA) is defined as extracellular

DNA occurring in body fluids was discovered in the human

bloodstream and first described in 1948 by Mandel and Metais

[7], but its origin and possible role is still controversial. The

cfDNAs are mostly double-stranded molecules with fragment size

in a wide range from 180 bp up to 21 kbp [8,9]. The shorter

fragments are thought to be related to the histone octamer

structure and apoptotic degradation process, while necrosis results

much larger fragments. Through phagocytosis of apoptotic cells

macrophages may release the degraded DNA fragments into the

bloodstream. These cfDNA fragments circulate as nucleoprotein

complexes and in healthy individuals, the main part of cfDNA is

found adsorbed to the surface of blood cells [10,11].
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The cfDNA concentration in healthy people is between 0 and

100 ng/ml with a mean of 13+3 ng/ml. This level is increased by

an order of magnitude in various types of cancer up to a mean of

180+38 ng/ml [12]. How the circulating cfDNA is then

eliminated from the blood remains unknown in general but

altered nucleotide metabolism was observed in tumorous patients.

According to this hypothesis the increased cfDNA concentration is

caused by the reduced DNase activity in the tumorous plasma [13]

and indeed treatment of tumorous mice with ultra low doses of

nucleases significantly decreased the liver and lung metastasis [14].

On the other hand according to Holdenrieder et al. [15] the

efficiency of plasma nucleases is limited because the structure of

nucleoprotein complexes is able to protect the cfDNA from

degradation.

Studying the clearance of fetal DNA from maternal blood after

birth by Lo et al. [16] a relatively quick mean half-life time

(16.3 min, range 4–30 min) of the cfDNA was observed by using

PCR. During the elimination process an initial rapid tissue uptake

phase and a second DNase-mediated slower phase can be

separated [16,17].

The cfDNA fragments circulating in the plasma are a mostly

uniform sample of the whole genome, however there are some

over-represented fragments. Increased DNA integrity was ob-

served in tumorous plasma samples due to the higher ratio of b-

actin fragments with lengths of 400 bp compared to samples from

patients with non-neoplastic diseases, which may be caused by the

different origin and degradation rate of the cfDNA [18].

The Origin of the Cell Free DNA
There are many, sometimes contradicting, theories concerning

the release of cfDNA and its distribution in the body. Also, we are

only at the first steps to uncover the cellular and molecular

mechanisms that transfers cfDNA from cells to blood. Initially

pathogen origin has been attributed to cfDNA, later different

pathological conditions like cancer, inflammation and autoim-

mune disease, while finally it has been shown to be present in the

plasma of subjects with normal physiological conditions [19,20],

too. Our current understanding is that apoptotic cells – which are

present in healthy individuals, too – are the primary source.

Additionally, in different diseases (inflammation, autoimmune,

trauma and cancer) necrotic cells may increase the cfDNA level

[8,21].

There is an alternative theory, which suggests that white blood

cells are the main source of cfDNA. Lee et al. [22] attributes the

higher concentration in serum than plasma samples to the process

of clotting caused by the lysis of white blood cells. Also, in

limphocyte, DNA with lower molecular weight than genomic

DNA can form a complex with glycoproteins and be actively

released into the bloodstream to act as a signaling molecule in

different signal transduction pathways [23,24].

Numerous groups have demonstrated that the genetic and

epigenetic alterations of cfDNA in cancer patients can be detected

[25], and a possible role in genometastasis has been suggested

[26], too. If the issues concerning the great variations in sensitivity

and specificity and the mismatch between the cancer profiles from

cfDNA studies and other methods [20,27] were resolved then

cfDNA monitoring could be a promising tool in cancer

diagnostics.

Foreign Sources of cfDNA
There is evidence that beyond the human cells of the subject

other organisms can contribute to the cfDNA budget.

Other humans: Predominant donor origin was proved in patients

receiving sex-mismatched bone marrow transplants using quanti-

zation of Y-chromosome sequences of plasma and serum cfDNA

[28]. Cell free DNA of the fetus can be detected in maternal

plasma promising non-invasive prenatal testing of fetal genetic

conditions [29]. Though the fetal DNA is in relatively low

concentration compared to the maternal cfDNA, fetal DNA has a

lower molecular weight. With fragment size separation fetal DNA

can be enriched [30] to a level that makes possible the diagnostics.

Note, that in our study we use a similar technique and find that

indeed different sized cfDNA fractions may have different origin.

Viruses. Virus DNA has been identified using plasma

samples from different virus related (lung, gastric, head and neck

cancer) tumor patients [31–33], however, the virus DNA

concentration could not be related to the size of the solid tumor

and no viral DNA could be identified in cervix cancer [34].

Bacteria. Using 16S rDNA analysis Jiang et. al [35] has

shown, that the bacterial DNA level in the human plasma

correlates with immune activation and the magnitude of immune

restoration in antiretroviral-treated HIV infected persons. Citro-

bacter freundii and Pseudomonas aeruginosa sequences were identified

from patients with acute pancreatitis by PCR and sequencing

based approach [36].

Food. DNA from consumed food is usually not considered as

a possible source of cfDNA since during food digestion all

macromolecules are thought to be degraded to elementary

constituents such as amino acids and nucleotides, which are then

transferred to the circulatory system through several complex

active processes [3]. Though, there are animal studies, mainly

focusing on the GMO issue [4], supporting the idea that small

fragments of nucleic acids may pass to the bloodstream and even

get into various tissues. For example foreign DNA fragments were

detected by PCR based techniques in the digestive tract and

leukocytes of rainbow trouts fed by genetically modified soybean

[37], and other studies report similar results in goats [38], pigs

[39,40] and mice [5].

Results and Discussion

As a first step we have surveyed the composition of cfDNA in

samples from 200 human individuals pooled into four groups

based on colonoscopy diagnosis as having inflammatory bowel

disease (IBD), adenoma (AD), colorectal cancer (CRC) or as

negative (NEG). To avoid contamination we have used a

contained blood collection and plasma separation system. During

the nucleic acid isolation Laminar flow with HEPA filter and

filtered pipetting tips were used. Since at the early stage we have

separated DNA from particulates, the only possibility of contam-

ination would have been in the form of free DNA which we find

very improbable.

Since the sequencing technique produces relatively short

fragments (50 nt) it is not possible to estimate the original

fragment size from a sequencing study. To be able to infer the

foreign cfDNA fragment distribution, prior to sequencing each

sample has been separated into three fractions according to their

average DNA length. Fraction 1 contained intact DNA above

10 kb (10 thousand base pairs), fraction 2 fragments between

200 bp to 10 kb (smear) and fraction 3 around 200 bp long

segments (nucleosomal DNA). After barcoding, fragment libraries

were sequenced on a SOLiD IV Next Generation Sequencing

(NGS) system yielding 50 nt long reads a total of 86.6 Gbases.

Sequencing data is publicly available here: http://www.ebi.ac.uk/

ena/data/view/ERP002472. Despite the relatively short lengths

of the NGS reads, the separation to fractions and barcoding made

possible to identify the original size of the DNA fragments in the

blood. On average 71.1% of the reads could be mapped to the

Foreign DNA in Blood
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human reference genome. The goal of the original study was to

find (human) genetic differences between the four groups,

according to the stage of their disease, but the relatively large

amount of unmapped reads urged us to explore their origin, which

is the subject of this article. With discarding the cellular DNA

during the sample preparation, using cfDNA only and in this

second step discarding the human-matching short reads we have

achieved a significant enhancement on the detection of the

possibly present non-human DNA.

Before searching for traces of foreign genomes we have

discarded the reads which matched the reference human genome.

In this way we have excluded most of the possible homologous

sequence reads which could give false positive signal from low-

complexity, repetitive or evolutionally conservative human

sequences. During the initial alignment to human genome we

have used permissive parameter settings (‘‘-n 3’’) of the Bowtie

NGS aligner tool [41] that allowed alignments with several

mismatches. This made possible to identify reads which had

mutations compared to the reference genome or which had read

errors during the sequencing process. On the other hand, during

the alignment to foreign genomes, to reduce the possibility of

chance alignments, we have used a more stringent criterion, the ‘‘-

n 0’’ switch of Bowtie and accepted alignments only with perfect

match in the first 28 nt long seed region. To further reduce the

possibility of false positives and chance matches to homologous,

evolutionally conservative human segments we have fitted the

reads matching the tomato genome against the whole refseq

genomic collection of NCBI using BLASTN [42] with default

settings (blast2 -p blastn -i sample.fa -d refseq_genomic -m 7 -o results.xml).

The resulting GenBank IDs were joined to the NCBI taxonomy

database to associate them with classes and divisions.

Testing the sequences against the chloroplast genome collection

of NCBI (Table 1), over 25,000 sequence reads (Table 2) aligned

to plant chloroplasts, among which Solanum tuberosum (potato) and/

or the closely related Solanum lycopersicum (tomato) were the most

abundant. Calculating the statistics for the tomato chloroplast

alone, 127,885 of the 155,461 nucleotides in the plastome are

covered by at least one read for the IBD sample. The average

coverage is 6.3, which is higher than the sample’s coverage of 4.9

for the human genome (see Figure 1). We have found hints for

presence of DNA from other food related species (e.g. chicken), but

due to the larger genetic homology between vertebrates, larger

samples would be needed for convincing results, results will be

discussed elsewhere.

The number of aligning short reads shows large differences

between the various samples (see Table 2). Most of the matches are

in the 1st fraction of IBD that contains the longest (w10 kb) intact

DNA segments. This is surprising in the light of the current

paradigm [43], which assumes that during digestion and

absorption DNA is degraded to nucleotides. Our results show

that not just some of the DNA can avoid the complete

degradation, but fragments large enough to carry complete genes

can pass from the digestive tract to blood. As shown in Table 2 the

BLAST verification is consistent with the original findings, for

chloroplast target sequences dominant part of BLAST hits

matched plants only (i.e. not any other species in NCBI Ref.

Seq.). The bacterial matching reads can be the result of the genetic

homology of the chloroplast genome and bacterial genomes, or

may indicate the presence of bacterial DNA in the samples.

All these results strengthen our conclusion that the meal-derived

DNA fragments are able to avoid the total degradation in the

gastrointestinal tract and enter the circulation through a previously

unknown mechanism.

Validation on Independent Samples
The NGS technology is evolving so fast and sequences are

produced in such a rate that detailed understanding of all the

information hiding in them cannot keep pace with data collection;

hence already analyzed data may provide new insights for another

research question. So, to confirm our discovery we have searched

the publicly available NGS archives [44–46] for circulating cell-

free DNA sequencing data. Compared to nuclear genome

sequencing studies, plasma DNA data is very rare in the archives.

We have found altogether 909 samples from 907 individuals in

three studies with accession numbers DRP000446, SRP009039

and SRP016573. The analysis of these independent NGS data

confirms our hypothesis that the presence of foreign DNA in

human plasma is not unusual, though it shows large variation from

subject to subject. SRP016573 study also provides a natural

‘negative control sample’ and eliminates the possibility that the

results are mere statistical artifacts, since no trace of plant DNA

was found in cord blood samples while more than 1000 reads were

detected in the maternal plasma.

Independent sample from subject with inflammation

shows high plant DNA concentration. The original goal of

the DRP000446 study [47] was to detect potential pathogens in

patients with Kawasaki disease, which is an autoimmune disease

that involves the inflammation of blood vessels. The authors of the

study have collected 6 DNA samples, two of them from formalin-

fixed paraffin-embedded sample of the lymph node biopsy, one

from pharyngeal swab sample and three form serum specimens at

different stages of the disease. We have analyzed the sequencing

data for the three serum samples DRR001355, DRR001356 and

DRR001357. The total number of reads in the three samples is

only 3.2 M which is much less than the 1732 M in our study, but

since a different sequencer (Illumina Genome Analyzer II) was

used, the reads are longer (81 nt long) than the 50 nt long reads in

our studies (ABI Solid 4 System) reducing further the probability of

false positives. Using the same pipeline as above, we have

discarded the reads which match the human genome, then

aligned the remaining ones to the chloroplast database. The

largest number of unique positions were found for Brassica rapa

(NC_015139) followed closely by orange (NC_008334). We

provide the coverage map in Figure 2. 27742 nucleotide positions

of the total 180852 are covered for Brassica rapa. Counting the

multiply covered regions, the average coverage is 0.56. Note

however, that the coverage is less uniform than for our IBD

sample, the rRNA16 s and rRNA 23 s regions are overrepresent-

ed. This indicates that some of the matching DNA fragments may

originate from some other related species which is missing from

the chloroplast genome collection we use. Also, since the

chloroplasts have been evolved from endosymbiotic bacteria,

bacterial genome fragments may align to this evolutionarily

conservative region. Indeed if we BLAST all the 1634 reads that

matched the chloroplast genomes against the refseq database, 733

of them also match various bacterial genomes, but 894 does not

match any other organisms, just plants. The coverage for Brassica

rapa (orange spikes in Figure 2) without the bacterial reads is more

uniform. Though in this sample the presence of the chloroplast

genome is less definitive here than in our samples, the total reads

vs. chloroplast matching reads ratio is even higher. The initial

number of reads for the pooled IBD samples was 478 M and after

BLAST filtering non-plant sequences there were 23649 matches

for the chloroplast genomes i.e. 49 matches/million read

(49 ppm), for the other 3 samples these ratios are around or

below 1 ppm. For the DRP000446 sample the corresponding ratio

is 1634/3.2 M = 497 ppm (272 ppm without bacterial tags). Note,

that both in the IBD patients and the Kawasaki disease subject

Foreign DNA in Blood
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inflammation is present, hence from these samples we cannot

exclude the possibility, that the presence of food DNA in high

concentration is linked to inflammation.

The amount of plant DNA in 903 individual maternal

plasma samples is log-normally distributed and hints diet

pattern. Since the IBD sample was a pooled sample of 50

individuals we do not know how many individual samples

contributed to the chloroplast matching reads. In the

SRP009039 study [48] plasma DNA of 903 healthy pregnant

women with ages ranging from 20 to 45 years were sequenced to

study the possibility of prenatal noninvasive diagnosis of fetal

trisomy. Depending on the platform, Illumina GAIIx and Illumina

HiSeq 2000, the length of the reads are 36 nt or 50 nt,

respectively. Though the individual read count is relatively small,

typically in the 1 M–14 M reads/study range, the samples are

individually identified, so compared to our pooled samples we

hope to see if there are individual differences. As for the previous

samples we have tested the presence of plant chloroplast DNA and

got the largest coverage for soybean (Glycine max, NC_007942.1)

with uniform coverage.

The overall average chloroplast DNA ratio is 1.481 ppm but

there is a very large variation from sample to sample, so we

visualize their cumulative distribution on a logarithmic scale in

Figure 3. The numbers of reads per sample are in the range of

940,929–12,827,703 with an average 2,483,480, so it is not

possible to detect concentration below 0.078 ppm for the largest,

and below 0.35 ppm for the average sized sample. In 75% of the

samples we could detect plant DNA and for 220 of the total 903

subjects there are no aligning reads at all, most probably because

of the wide distribution and the low coverage. Down to the above

mentioned cutoff value the data can be fitted with the following

log-normal distribution:

F (x)~
1

2
|erfc

{ln(x){m

s

� �

m~{0:384

s~1:71

ð1Þ

with only two free parameters, the location parameter m and the

scale parameter s, the analogs of mean and standard deviation,

respectively. If we take into account the finite size of the samples

even the cutoff break around 0.35 can be modeled. The gray

shaded band in Figure 3 is the result of the simulation of 300

realizations of the log-normal process with taking into account the

concrete sizes of the samples. Though log-normal distribution is

ubiquitous in almost all disciplines [49] the precise agreement

between the data and model is quite surprising. The trend may be

explained by the exponential decay dynamics of foreign cfDNA

with randomly varying half-lives or waiting times between

consumption and blood sample collection.

There are alignments to several plant species and since the

samples are from over 900 different subjects we can test the

individual differences. This can be considered as a test of

contamination too. If the food origin of this external DNA is

true, we expect different plants dominating different samples,

according to the different diet of patients, while lab contamination

would most probably result the same composition in all samples.

In Figure 4 we show how the number of matching reads are

distributed between subjects and different plant species. To make

the visualization of the broad distribution possible, only plants with

at least 50 and samples with at least 10 aligning reads are shown.

The clustering algorithm recovers the taxonomic groups of plants.

The first three species (beans) are members of the Fabaceae family,

the next eight species belong to the Brassicaceae family. These two

Figure 1. Coverage of the tomato chloroplast in the IBD sample. Small gray dots indicate the counts of alignments at individual nucleotide
positions, darker shades are the result of several overlapping points. The orange line is the smoothed coverage of the tomato chloroplast, while the
short gray dash indicates the average coverage level of the human genome for the same sample.
doi:10.1371/journal.pone.0069805.g001
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Table 1. The accession numbers and names of the plants.

Accession number Name Accession number Name

NC_008101.1 Scenedesmus obliquus NC_008097.1 Chara vulgaris

NC_008099.1 Oltmannsiellopsis viridis NC_008100.1 Helicosporidium

NC_008117.1 Zygnema circumcarinatum NC_008116.1 Staurastrum punctulatum

NC_008114.1 Pseudendoclonium akinetum NC_008115.1 Eucalyptus globulus

NC_008155.1 Oryza sativa Indica Group NC_008235.1 Populus alba

NC_008289.1 Ostreococcus tauri NC_008326.1 Liriodendron tulipifera

NC_008325.1 Daucus carota NC_008334.1 Citrus sinensis

NC_008335.1 Platanus occidentalis NC_008336.1 Nandina domestica

NC_001840.1 Cyanidium caldarium NC_000925.1 Porphyra purpurea

NC_002186.1 Mesostigma viride NC_001319.1 Marchantia polymorpha

NC_001320.1 Oryza sativa Japonica Group NC_001568.1 Epifagus virginiana

NC_001675.1 Cyanophora paradoxa cyanelle NC_001713.1 Odontella sinensis

NC_000926.1 Guillardia theta NC_000927.1 Nephroselmis olivacea

NC_008359.1 Morus indica NC_001799.1 Toxoplasma gondii

NC_002202.1 Spinacia oleracea NC_008372.1 Stigeoclonium helveticum

NC_008407.1 Jasminum nudiflorum NC_008408.1 Bigelowiella natans

NC_008454.1 Pelargonium x hortorum NC_008456.1 Drimys granadensis

NC_008457.1 Piper cenocladum NC_008535.1 Coffea arabica

NC_008588.1 Phaeodactylum tricornutum NC_008589.1 Thalassiosira pseudonana

NC_008591.1 Agrostis stolonifera NC_008590.1 Hordeum vulgare

NC_008602.1 Sorghum bicolor NC_008641.1 Gossypium barbadense

NC_001666.2 Zea mays NC_008788.1 Nuphar advena

NC_008796.1 Ranunculus macranthus NC_008822.1 Chlorokybus atmophyticus

NC_008829.1 Angiopteris evecta NC_002652.1 Euglena longa

NC_009143.1 Populus trichocarpa NC_002694.1 Lotus japonicus

NC_009270.1 Capsella bursa-pastoris NC_009259.1 Phaseolus vulgaris

NC_009269.1 Barbarea verna NC_009273.1 Lepidium virginicum

NC_009275.1 Nasturtium officinale NC_009266.1 Aethionema grandiflorum

NC_009267.1 Olimarabidopsis pumila NC_009268.1 Arabis hirsuta

NC_009271.1 Crucihimalaya wallichii NC_009272.1 Draba nemorosa

NC_009274.1 Lobularia maritima NC_009265.1 Aethionema cordifolium

NC_002762.1 Triticum aestivum NC_004677.2 Pinus koraiensis

NC_009573.1 Rhodomonas salina NC_007898.2 Solanum lycopersicum

NC_009598.1 Chloranthus spicatus NC_009601.1 Dioscorea elephantipes

NC_009600.1 Illicium oligandrum NC_009599.1 Buxus microphylla

NC_009618.1 Cycas taitungensis NC_009681.1 Leptosira terrestris

NC_009766.1 Cuscuta reflexa NC_009765.1 Cuscuta gronovii

NC_009808.1 Ipomoea purpurea NC_009949.1 Cuscuta obtusiflora

NC_009950.1 Lolium perenne NC_009962.1 Ceratophyllum demersum

NC_009963.1 Cuscuta exaltata NC_010093.1 Acorus americanus

NC_010109.1 Lemna minor NC_002693.2 Oenothera elata

NC_010323.1 Carica papaya NC_010358.1 Oenothera argillicola

NC_010359.1 Aneura mirabilis NC_010360.1 Oenothera glazioviana

NC_010361.1 Oenothera biennis NC_010362.1 Oenothera parviflora

NC_010433.1 Manihot esculenta NC_010442.1 Trachelium caeruleum

NC_010548.1 Cryptomeria japonica NC_003119.6 Medicago truncatula

NC_010601.1 Guizotia abyssinica NC_010654.1 Welwitschia mirabilis

NC_003386.1 Psilotum nudum NC_010772.1 Heterosigma akashiwo

NC_010776.1 Fagopyrum esculentum NC_011032.1 Brachypodium distachyon

NC_011031.1 Oedogonium cardiacum NC_011163.1 Cicer arietinum

Foreign DNA in Blood

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e69805



Table 1. Cont.

Accession number Name Accession number Name

NC_011395.1 Babesia bovis T2Bo apicoplast NC_011600.1 Vaucheria litorea

NC_011828.1 Trifolium subterraneum NC_011930.1 Keteleeria davidiana

NC_011942.1 Gnetum parvifolium NC_011954.1 Ephedra equisetina

NC_012052.1 Syntrichia ruralis NC_012099.1 Pyramimonas parkeae

NC_012097.1 Pycnococcus provasolii NC_012101.1 Monomastix sp. OKE-1

NC_012224.1 Jatropha curcas NC_012568.1 Micromonas pusilla

NC_012575.1 Micromonas sp. RCC299 NC_004115.1 Chaetosphaeridium globosum

NC_012615.1 Megaleranthis saniculifolia NC_011157.3 Pinus longaeva

NC_011152.3 Picea sitchensis NC_012898.1 Aureococcus anophagefferens

NC_012903.1 Aureoumbra lagunensis NC_012818.1 Alsophila spinulosa

NC_012927.1 Bambusa oldhamii NC_012978.1 Parachlorella kessleri

NC_011713.2 Festuca arundinacea NC_013086.1 Selaginella moellendorffii

NC_013088.1 Dendrocalamus latiflorus NC_013273.1 Coix lacryma-jobi

NC_013359.1 Bryopsis hypnoides NC_013498.1 Ectocarpus siliculosus

NC_013553.1 Parthenium argentatum NC_004543.1 Anthoceros formosae

NC_004561.1 Atropa belladonna NC_013703.1 Cryptomonas paramecium

NC_013707.1 Olea europaea NC_013823.1 Typha latifolia

NC_013843.1 Vigna radiata NC_008096.2 Solanum tuberosum

NC_014062.1 Anomochloa marantoidea NC_014063.1 Lathyrus sativus

NC_014057.1 Pisum sativum NC_014056.1 Oncidium Gower Ramsey

NC_014267.1 Kryptoperidinium foliaceum NC_014287.1 Durinskia baltica

NC_013991.2 Phoenix dactylifera NC_014348.1 Pteridium aquilinum

NC_014340.1 Chromera velia NC_014345.1 Alveolata sp. CCMP3155

NC_004766.1 Adiantum capillus-veneris NC_001603.2 Euglena gracilis

NC_014346.1 Floydiella terrestris NC_004799.1 Cyanidioschyzon merolae

NC_014592.1 Cheilanthes lindheimeri NC_014569.1 Erodium texanum

NC_014573.1 Geranium palmatum NC_014582.1 Monsonia speciosa

NC_014575.1 Cedrus deodara NC_014589.1 Cathaya argyrophylla

NC_014570.1 Eucalyptus grandis NC_014697.1 Prunus persica

NC_014699.1 Equisetum arvense NC_014674.1 Castanea mollissima

NC_014675.1 Isoetes flaccida NC_014676.1 Theobroma cacao

NC_004823.1 Eimeria tenella NC_014808.1 Thalassiosira oceanica

NC_014807.1 Corynocarpus laevigata NC_014874.1 Rhizanthella gardneri

NC_015083.1 Erodium carvifolium NC_015104.1 Smilax china

NC_015113.1 Anthriscus cerefolium NC_015084.1 Coccomyxa sp. C-169

NC_015139.1 Brassica rapa s. pekinensis NC_004993.1 Calycanthus floridus

NC_011153.4 Pinus contorta NC_011154.4 Pinus gerardiana

NC_011155.4 Pinus krempfii NC_011156.4 Pinus lambertiana

NC_011158.4 Pinus monophylla NC_011159.4 Pinus nelsonii

NC_015206.1 Fragaria vesca NC_015204.1 Gossypium thurberi

NC_015308.1 Hevea brasiliensis NC_015402.1 Ptilidium pulcherrimum

NC_015401.1 Olea europaea NC_015403.1 Fistulifera

NC_015359.1 Chlorella variabilis NC_015605.1 Nelumbo lutea

NC_015610.1 Nelumbo nucifera NC_015604.1 Olea europaea

NC_015608.1 Olea woodiana NC_015621.1 Ageratina adenophora

NC_015623.1 Olea europaea subsp. maroccana NC_015543.1 Jacobaea vulgaris

NC_005086.1 Amborella trichopoda NC_005087.1 Physcomitrella patens

NC_005353.1 Chlamydomonas reinhardtii NC_005878.2 Saccharum hybrid

NC_005973.1 Oryza nivara NC_006050.1 Nymphaea alba

NC_006084.1 Saccharum officinarum NC_006137.1 Gracilaria tenuistipitata
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families are distantly related in the Eurosids clade. There are four

members from the Solanaceae family (potato, tobacco,) and one

from the Convolvulaceae (Ipomoea, Cuscuta) family. These two

families are members of the Solanales order. The remaining eight

species are from the Poaceae family from the Monocots clade [50].

All these 24 plants are often consumed by humans or are close

relatives of frequently eaten species while many non-edible plants

which were part of the aligned chloroplast database do not show

up on the list (see Table 1 for complete list of aligned species). Note

that on one hand not edible but genetically related species can

show up, and the other hand not all the frequently eaten plant

species are part of our chloroplast genome collection. We suspect

that the only outlier, the non-edible Ipomoea purpurea (morning

glory) shows up because the similarity to the genome of Ipomoea

batatas (sweet potato) or Ipomoea aquatica (kangkong, or Chinese

spinach), a common ingredient in Southeast Asian dishes. Though

the number of reads is too small to reconstruct the diet of the

individuals, subjects with high Poaceae, high Fabaceae and ‘‘high

everything except Poaceae’’ levels can be grouped together. We

consider this pattern in food genome coverage as a further proof

that the signal is not a statistical artifact.

Cord blood is free of plant DNA while it can be detected in

mother’s plasma. Four samples from fetal umbilical cord

blood, maternal plasma and mother’s and father’s peripheral

blood, with 44|sequence depth were analyzed in the SRP016573

study to noninvasively infer fetal genotype and haplotype and

identify Mendelian-disorder genes and complex disease-associated

markers [51]. The setup of this study is ideal for testing plant

DNA. According to our previous results we expect to find some

plant DNA in the maternal plasma sample. Though peripheral full

blood samples should contain traces of plant DNA, we expect it’s

relative concentration much smaller due to the higher amount of

human DNA from blood cells. Though the maternal blood

reaches the fetal chorion, and fetal plasma can be detected in

Table 1. Cont.

Accession number Name Accession number Name

NC_006290.1 Panax ginseng NC_006861.1 Huperzia lucidula

NC_007144.1 Cucumis sativus NC_007288.1 Emiliania huxleyi

NC_001631.1 Pinus thunbergii NC_001865.1 Chlorella vulgaris

NC_000932.1 Arabidopsis thaliana NC_007407.1 Acorus calamus

NC_007500.1 Nicotiana sylvestris NC_007499.1 Phalaenopsis aphrodite

NC_007578.1 Lactuca sativa NC_001879.2 Nicotiana tabacum

NC_007602.1 Nicotiana tomentosiformis NC_007758.1 Theileria parva

NC_007932.1 Porphyra yezoensis NC_007944.1 Gossypium hirsutum

NC_007943.1 Solanum bulbocastanum NC_007942.1 Glycine max

NC_007957.1 Vitis vinifera NC_007977.1 Helianthus annuus

The chloroplast genomes of these species were obtained from the NCBI archive and their presence was tested in the sequenced human samples.
doi:10.1371/journal.pone.0069805.t001

Table 2. The initial number of sequence reads and the ones matching the chloroplast genome collection.

Sample ID
Fragment
size (bp)

Total number
of reads

Bowtie
Chloroplast BLAST

Bacteria Mammalia
Plants
only

AD1 w10 k 88,223,059 58 (0.657 ppm) 11 0 44

AD2 200…10 k 69,413,572 33 (0.475 ppm) 4 0 19

AD3 v200 129,543,409 28 (0.216 ppm) 4 0 18

CRC1 w10 k 211,165,918 248 (1.174 ppm) 70 1 154

CRC2 200…10 k 214,141,527 261 (1.218 ppm) 42 0 193

CRC3 v200 104,843,894 184 (1.754 ppm) 44 0 112

IBD1 w10 k 163,948,523 23319 (142.234 ppm) 820 39 21565

IBD2 200…10 k 148,952,652 237 (1.591 ppm) 32 2 190

IBD3 v200 165,613,909 93 (0.561 ppm) 4 0 85

NEG1 w10 k 153,790,123 257 (1.67 ppm) 82 4 161

NEG2 200…10 k 137,374,304 275 (2.00 ppm) 47 1 215

NEG3 v200 143,953,730 90 (0.625 ppm) 21 0 69

BLAST against the complete NCBI reference sequence database confirms that the chloroplast matching reads identified by the NGS alignment software Bowtie match
only plant genomes and just in very few cases mammal genomes. The bacterial alignments are partly the result of the chloroplasts’ genetic homology to them or may
indicate the presence of circulating bacterial DNA. Among the IBD fractions, the one with largest DNA fragment size has the largest concentration.
doi:10.1371/journal.pone.0069805.t002
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mother’s blood there is no direct fluid exchange between mother

and fetus. So, even though some plasma DNA may have passed

from mother to child, it’s concentration would be much smaller in

cord blood. We can use the cord blood sample as a natural

‘negative control’: if the plant DNA signal was the result of some

contamination during the processing or a statistical artifact, it

Figure 2. Brassica rapa chloroplast coverage pileup for the DRP000446 study. The gray spikes shows the counts of alignments at individual
nucleotide positions (vertical scale is logarithmic). 27742 nucleotide positions of the total 180852 are covered. There are two regions around 100,000
and 135,000 where the coverage is more than 10 times than at other parts of the chloroplast. These are the regions where the ribosomal RNA genes
are found which share very similar sequence with other chloroplasts and bacterial genomes. Indeed if we BLAST all the 1634 reads that matched the
chloroplast genomes against the NCBI reference sequence database, 733 of them also match various bacterial genomes, but 897 does not match any
other organisms, just plants. Removing those alignments that match bacterial genomes too, (gray spikes) makes the distribution more uniform.
doi:10.1371/journal.pone.0069805.g002

Figure 3. The cumulative distribution of plant DNA amount for over 900 subjects. It (black dots) can be fitted with log-normal distribution
(red curve) above the sensitivity cutoff (0.35). The gray shaded band is the result of the simulation of 300 realizations of the log-normal process with
taking into account the varying sizes of the samples. Among the independent samples (larger dots), the ones from patients with inflammatory
diseases (IBD, DRP000446) have the largest concentration. For the SRP016573 sample only the maternal plasma concentration is shown, full blood
samples with 0.001 ppm and 0.004 ppm and cord blood samples with zero alignments are omitted from the figure.
doi:10.1371/journal.pone.0069805.g003
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should show up in this sample, too. Beyond high sequencing

depth, the paired layout of this study with 2|100 nt long reads

(Illumina HiSeq 2000) further diminish the chance of false

positives.

While 1110 reads (0.703 ppm) from the maternal plasma

aligned to chloroplast genomes, only 3 reads (0.004) from the

father’s and 1 read (0.001 ppm) from the mother’s full blood

sample matched them. There was not a single chloroplast

matching read among the 560 M from the umbilical cord blood

(see Table 3).

Conclusion
The analysis of all the publicly available circulating cell-free

DNA sequencing data of over 1000 human subjects confirms our

hypothesis that the presence of foreign DNA in human plasma is

not unusual. It shows large variation from subject to subject

following strikingly well a log-normal distribution with the highest

concentration in patients with inflammation (Kawasaki disease,

IBD). These findings could lead to a revision of our view of

degradation and absorption mechanisms of nucleic acids in the

human body.

Figure 4. This heatmap shows the number of chloroplast matching reads on a log2 scale for the SRP009039 study. From the total 903
subjects the ones with the largest number of matches are shown (only the plant genomes with more than 50, and only the subjects with more than
10 matching reads), the rows are the plant species, the columns are the samples. The automatic clustering recovers the related plant species and the
subjects can be also grouped by the food types.
doi:10.1371/journal.pone.0069805.g004

Table 3. The number of sequence reads in the samples and the number and ratio of chloroplast matching ones.

Study accession number Total number of reads Bowtie Chloroplast BLAST

Bacteria Mammalia Plants only

AD 287,180,040 119 (0.414 ppm) 19 0 81

CRC 530,151,339 693 (1.307 ppm) 156 1 459

IBD 478,515,084 23649 (49.421 ppm) 856 41 21840

NEG 435,118,157 622 (1.429 ppm) 150 5 445

DRP000446 3,284,956 1634 (497.419 ppm) 733 5 894

SRP009039 2,551,402,380 3781 (1.481 ppm) 908 20 2746

SRP016573 maternal plasma 1,578,181,738 1110 (0.703 ppm) 169 12 851

SRP016573 father full blood 672,693,854 3 (0.004 ppm) 0 0 2

SRP016573 mother full blood 696,977,900 1 (0.001 ppm) 0 0 1

SRP016573 cord blood 560,035,524 0 (0.000 ppm) 0 0 0

Though some reads which were identified by the aligner software (Bowtie) can be fitted to other species like bacteria, most of them match plants only.
doi:10.1371/journal.pone.0069805.t003
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Materials and Methods

Here we describe the details for the NEG, IBD, AD, CRC

samples. For DRP000446, SRP009039 and SRP016573 samples

see the cited papers and the description at the archives,

respectively.

Anticoagulated blood was collected from the antecubital veins of

fifty healthy individuals (median age, 42.6 years) who had negative

colonoscopy. Blood was also collected from three diseased groups

including inflammatory bowel disease (48) (median age, 35.2 years)

colorectal adenoma (35) (median age, 53.4 years) and colorectal

cancer (37) (median age, 64.9 years) with positive macroscopic and

pathological finding. Study plan of the medical research was made

according to the current legislations and World Medical Associ-

ation Declaration of Helsinki. Ethics Committee approval was

obtained (Nr.: TUKEB 2009/037. Semmelweis University

Regional and Institutional Committee of Science and Research

Ethics, Budapest, Hungary) and written informed consent was

provided by all patients.

Plasma Separation and Cell Free DNA Isolation
Whole-blood samples were collected into Vacutainer tubes (BD

Medical Systems) and plasma separation was performed by double

centrifugation method (261500 g for 10 min) at 4uC within 1 h of

the blood collection. The purified plasma fraction was stored at

280uC. From plasma cfDNA was extracted using QIAamp

Circulating Nucleic Acid Kit (Qiagen) following the manufactur-

er’s instructions with modification. Briefly, cfDNA was isolated

from 5 ml plasma without addition carrier RNA. Quantification of

cfDNA was performed using Qubit dsDNA HS Assay fluorometric

Kit (Invitrogen). Eluates were pooled from equivalent amount

from each sample and concentrated to a final volume of 200 ml
using QIAamp Circulating Nucleic Acid Kit (Qiagen). To achieve

the optimal sample volume (50 ml) SpeedVac (Eppendorf)

concentrator was used.

SOLiD Fragment Library Preparation and Sequencing
The DNA fragment library resequencing was performed on

SOLiD IV system. Total of 3–5 mg cfDNA was pooled from each

group and three fractions were separated via electrophoresis using

SyberSafe 1% TBE agarose gel (Invitrogen) and recovered by

QIAquick Gel Extraction Kit (Qiagen). Three fractions were

separeted according to sequence lengths: the 1st fraction is the

intact DNA above 10 kb, the second is between 200 bp to 10 kb

(smear) and the 3rd fraction is around 200 bp (nucleosomal DNA).

In case of fractions 1 and 2 physical fragmentation was optimized

and performed by Covaris S2 instrument. The fractions were

labeled by individual barcode (Life Technologies). The size

selected DNA (100 mL) was end-repaired by adding 40 mL 56
End-Polishing Buffer, 4 mL dNTP mix, (10 mM), 2 mL End

Polishing Enzyme 1, 10 U=mL, 8 mL End Polishing Enzyme 2,

5 U=mL, 46 mL MQ distilled water in 200 ml total volume and

incubating for 30 min at room temperature. The DNA (180 mL)

was purified by AMPure XP beads (70 mL) (Agencourt). Nick

translation and amplification (15 cycles) was performed to amplify

the ligated and purified DNA using Platinum PCR Amplification

Mix (Life Technologies). Distribution of the amplified and non-

ligated DNA was controlled using Agilent High Sensitivity DNA

kit (Agilent). Size selection was performed using E-gel 2% system

(Invitrogen) with the following parameters: required size: 200–

250 bp, iBase program: Run E Gel DC, run time: 16 min, 200 ng

50 bp ladder. Library quantification was performed by TaqMan

assay and ePCR followed. After the quantification 76108 beads

were loaded into the sequencing slides. The sequencing yielded

50 nt long reads – a total of 86.6 Gbases.
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