14 research outputs found

    Spectrum from the warped compactifications with the de Sitter universe

    Full text link
    We discuss the spectrum of the tensor metric perturbations and the stability of warped compactifications with the de Sitter spacetime in the higher-dimensional gravity. The spacetime structure is given in terms of the warped product of the non-compact direction, the spherical internal dimensions and the four-dimensional de Sitter spacetime. To realize a finite bulk volume, we construct the brane world model, using the cut-copy-paste method. Then, we compactify the spherical directions on the brane. In any case, we show the existence of the massless zero mode and the mass gap of it with massive Kaluza-Klein modes. Although the brane involves the spherical dimensions, no light massive mode is excited. We also investigate the scalar perturbations, and show that the model is unstable due to the existence of a tachyonic bound state, which seems to have the universal negative mass square, irrespective of the number of spacetime dimensions.Comment: Journal version (JHEP

    Volume stabilization in a warped flux compactification model

    Get PDF
    We investigate the stability of the extra dimensions in a warped, codimension two braneworld that is based upon an Einstein-Maxwell-dilaton theory with a non-vanishing scalar field potential. The braneworld solution has two 3-branes, which are located at the positions of the conical singularities. For this type of brane solution the relative positions of the branes (the shape modulus) is determined via the tension-deficit relations, if the brane tensions are fixed. However, the volume of the extra dimensions (the volume modulus) is not fixed in the context of the classical theory, implying we should take quantum corrections into account. Hence, we discuss the one-loop effective potential of the volume modulus for a massless, minimally coupled scalar field.Comment: 25 pages, 8 figures, typos correcte

    Bulk inflaton shadows of vacuum gravity

    Get PDF
    We introduce a (5+m)(5+m)-dimensional vacuum description of five-dimensional bulk inflaton models with exponential potentials that makes analysis of cosmological perturbations simple and transparent. We show that various solutions, including the power-law inflation model recently discovered by Koyama and Takahashi, are generated from known (5+m)(5+m)-dimensional vacuum solutions of pure gravity. We derive master equations for all types of perturbations, and each of them becomes a second order differential equation for one master variable supplemented by simple boundary conditions on the brane. One exception is the case for massive modes of scalar perturbations. In this case, there are two independent degrees of freedom, and in general it is difficult to disentangle them into two separate sectors.Comment: 22 pages, 4 figures, revtex; v2: references adde

    Exactly solvable model for cosmological perturbations in dilatonic brane worlds

    Full text link
    We construct a model where cosmological perturbations are analytically solved based on dilatonic brane worlds. A bulk scalar field has an exponential potential in the bulk and an exponential coupling to the brane tension. The bulk scalar field yields a power-law inflation on the brane. The exact background metric can be found including the back-reaction of the scalar field. Then exact solutions for cosmological perturbations which properly satisfy the junction conditions on the brane are derived. These solutions provide us an interesting model to understand the connection between the behavior of cosmological perturbations on the brane and the geometry of the bulk. Using these solutions, the behavior of an anisotropic stress induced on the inflationary brane by bulk gravitational fields is investigated.Comment: 30 pages, typos corrected, reference adde

    Scalar perturbations from brane-world inflation

    Get PDF
    We investigate the scalar metric perturbations about a de Sitter brane universe in a 5-dimensional anti de Sitter bulk. We compare the master-variable formalism, describing metric perturbations in a 5-dimensional longitudinal gauge, with results in a Gaussian normal gauge. For a vacuum brane (with constant brane tension) there is a continuum of normalizable Kaluza-Klein modes, with m>3H/2, which remain in the vacuum state. A light radion mode, with m=\sqrt{2}H, satisfies the boundary conditions for two branes but is not normalizable in the single-brane case. When matter is introduced (as a test field) on the brane, this mode, together with the zero-mode and an infinite ladder of discrete tachyonic modes, become normalizable. However, the boundary condition requires the self-consistent 4-dimensional evolution of scalar field perturbations on the brane and the dangerous growing modes are not excited. These normalizable discrete modes introduce corrections at first-order to the scalar field perturbations computed in a slow-roll expansion. On super-Hubble scales, the correction is smaller than slow-roll corrections to the de Sitter background. However on small scales the corrections can become significant.Comment: 15 page

    Geometry and cosmological perturbations in the bulk inflaton model

    Full text link
    We consider a braneworld inflation model driven by the dynamics of a scalar field living in the 5-dimensional bulk, the so-called ``bulk inflaton model'', and investigate the geometry in the bulk and large scale cosmological perturbations on the brane. The bulk gravitational effects on the brane are described by a projection of the 5-dimensional Weyl tensor, which we denote by EμνE_{\mu\nu}. Focusing on a tachionic potential model, we take a perturbative approach in the anti-de Sitter (AdS5_5) background with a single de Sitter brane. We first formulate the evolution equations for EμνE_{\mu\nu} in the bulk. Next, applying them to the case of a spatially homogeneous brane, we obtain two different integral expressions for EμνE_{\mu\nu}. One of them reduces to the expression obtained previously when evaluated on the brane. The other is a new expression that may be useful for analyzing the bulk geometry. Then we consider superhorizon scale cosmological perturbations and evaluate the bulk effects onto the brane. In the limit H221H^2\ell^2\ll1, where HH is the Hubble parameter on the brane and \ell is the bulk curvature radius, we find that the effective theory on the brane is identical to the 4-dimensional Einstein-scalar theory with a simple rescaling of the potential even under the presence of inhomogeneities. % atleast on super-Hubble horizon scales. In particular, it is found that the anticipated non-trivial bulk effect due to the spatially anisotropic part of EμνE_{\mu\nu} may appear only at %second order in the low energy expansion, i.e., at O(H44)O(H^4\ell^4).Comment: 21 pages including 6 pages for several appendixes, no figure

    Bulk gravitational field and dark radiation on the brane in dilatonic brane world

    Full text link
    We discuss the connection between the dark radiation on the brane and the bulk gravitational field in a dilatonic brane world model proposed by Koyama and Takahashi where the exact solutions for the five dimensional cosmological perturbations can be obtained analytically. It is shown that the dark radiation perturbation is related to the non-normalizable Kaluza-Klein (KK) mode of the bulk perturbations. For the de Sitter brane in the anti-de Sitter bulk, the squared mass of this KK mode is 2H22 H^2 where HH is the Hubble parameter on the brane. This mode is shown to be connected to the excitation of small black hole in the bulk in the long wavelength limit. The exact solution for an anisotropic stress on the brane induced by this KK mode is found, which plays an important role in the calculation of cosmic microwave background radiation anisotropies in the brane world.Comment: 11 page

    Low energy effective theory on a regularized brane in 6D gauged chiral supergravity

    Get PDF
    We derive the low energy effective theory on a brane in six-dimensional chiral supergravity. The conical 3-brane singularities are resolved by introducing cylindrical codimension one 4-branes whose interiors are capped by a regular spacetime. The effective theory is described by the Brans-Dicke (BD) theory with the BD parameter given by ωBD=1/2\omega_{\rm BD}=1/2. The BD field is originated from a modulus which is associated with the scaling symmetry of the system. If the dilaton potentials on the branes preserve the scaling symmetry, the scalar field has an exponential potential in the Einstein frame. We show that the time dependent solutions driven by the modulus in the four-dimensional effective theory can be lifted up to the six-dimensional exact solutions found in the literature. Based on the effective theory, we discuss a possible way to stabilize the modulus to recover standard cosmology and also study the implication for the cosmological constant problem.Comment: 12 pages, 1 figur

    Hybrid compactifications and brane gravity in six dimensions

    Full text link
    We consider a six-dimensional axisymmetric Einstein-Maxwell model of warped braneworlds. The bulk is bounded by two branes, one of which is a conical 3-brane and the other is a 4-brane wrapped around the axis of symmetry. The latter brane is assumed to be our universe. If the tension of the 3-brane is fine-tuned, it folds the internal two-dimensional space in a narrow cone, making sufficiently small the Kaluza-Klein circle of the 4-brane. An arbitrary energy-momentum tensor can be accommodated on this ring-like 4-brane. We study linear perturbations sourced by matter on the brane, and show that weak gravity is apparently described by a four-dimensional scalar-tensor theory. The extra scalar degree of freedom can be interpreted as the fluctuation of the internal space volume (or that of the circumference of the ring), the effect of which turns out to be suppressed at long distances. Consequently, four-dimensional Einstein gravity is reproduced on the brane. We point out that as in the Randall-Sundrum model, the brane bending mode is crucial for recovering the four-dimensional tensor structure in this setup.Comment: 15 pages, 2 figures; v2: references added; v3: accepted for publication in Class. Quant. Gra

    Consistency equations in Randall-Sundrum cosmology: a test for braneworld inflation

    Full text link
    In the context of an inflationary Randall-Sundrum Type II braneworld (RS2) we calculate spectral indices and amplitudes of cosmological scalar and tensor perturbations, up to second order in slow-roll parameters. Under very simple assumptions, extrapolating next-order formulae from first-order calculations in the case of a de Sitter brane, we see that the degeneracy between standard and braneworld lowest-order consistency equations is broken, thus giving different signatures of early-universe inflationary expansion. Using the latest results from WMAP for estimates of cosmological observables, it is shown that future data and missions can in principle discriminate between standard and braneworld scenarios.Comment: 13 pages; v3: supersedes the published version, corrected misprint
    corecore