1,114 research outputs found

    Development of high sensitive real-time PCR to detect mustard and other allergens of the family Brassicaceae in food samples

    Get PDF
    Mustard is a commonly used condiment including in production of other food products. As mustard is an allergen, it is necessary to control its presence. The development of PCR test-systems for its detection is complicated by the fact that this condiment can be made from seeds of various plant species (Brassica juncea, Brassica nigra, Sinapis alba) of the family Brassicaceae that are not closely related. This family includes other plant species such as white cabbage (Brassica oleracea) and rapeseed (Brassica napus), which can cause the allergic reaction, although seldom. In this connection, many authors use primers specific to many species of this family, including to allergens, to detect mustard. In this work, we used the similar strategy. To increase sensitivity, primers for the mitochondrial COX gene were selected. To increase PCR stability in analysis of deeply processed products, primers were selected for a region with a length of 61 base pair. In the work, the specificity and sensitivity of the developed PCR method was confirmed. Analyses of different products, including those that underwent deep technological processing, were carried out with these primers. Also, primers were selected to detect white mustard (S. alba). When analyzing products on the presence of white mustard, charac‑ teristic regional preferences were demonstrated: this species is used in manufacturing products mainly in the UK and USA

    Features of Polymeric Structures By Surface—Selective Laser Sintering of Polymer Particles Using Water as Sensitizer

    Get PDF
    The development of scaffolds with strictly specific properties is a key aspect of functional tissue regeneration, and it still remains one of the greatest challenges for tissue engineering. This study is aimed to determine the possibility of producing three-dimensional polylactide (PLA) scaffolds using the method of surface-selectiv  laser sintering (SSLS) for bone tissue regeneration. In this work, the authors also improved PLA scaffold adhesion properties, which are crucial for successful cellular growth and expansion. Thus, SSLS method proved to be effective in designing threedimensional porous scaffolds with differentiated mechanical properties. Keywords: regenerative medicine, scaffolds, polylactide, surface – selective laser . sintering, tissue engeneering

    Laser Printing of Gel Microdrops with Living Cells and Microorganisms

    Get PDF
    We report the results of experiments on laser printing (wavelength λ=1064 nm) with gel microdrops acting as carriers of living microbial and cellular objects. The dynamics of transport processes with the help of high-speed optical video was studied, which allows to determine characteristics of the formed gel jets and to optimize the operating mode of the laser. It is shown that laser pulses of 4 to 20 ns duration and energy E ≤ 20 μJ should be used to minimize the negative effect on living systems. The results can be used to optimize the technologies of cellular printing and laser engineering of microbial systems (LEMS). LEMS technology is used to isolate hard-cultivated and non-cultivated by classical methods of microorganisms that can act as producers of new biologically active substances and antibiotics. Keywords: laser printing, gel, microdrop, living cell, microbia

    On the Difference in Action of the Laser Light with Wavelength Near 2mm on Biotissue in Gas and Water Media

    Get PDF
    It is shown that unlike action in the air environment, section of the biotissue in the water environment (physiological solution) is performed by the steam-gas stream which is formed as a result of superintensive boiling in thin (about 0.1 mm) a liquid layer in which absorbed laser radiation. Coagulation of the biotissue, adjacent to a section, happens due to heat which is produced via vapor condensation. Keywords: laser radiation in urology, a laser enucleation of the BPH, laser removal of the bladder cancer

    Aromaticity of the doubly charged [8]circulenes

    Get PDF
    Magnetically induced current densities and current pathways have been calculated for a series of fully annelated dicationic and dianionic tetraphenylenes, which are also named [8]circulenes. The gauge including magnetically induced current (GIMIC) method has been employed for calculating the current density susceptibilities. The aromatic character and current pathways are deduced from the calculated current density susceptibilities showing that the neutral [8]circulenes have two concentric pathways with aromatic and antiaromatic character, respectively. The inner octatetraene core (the hub) is found to sustain a paratropic (antiaromatic) ring current, whereas the ring current along the outer part of the macrocycle (the rim) is diatropic (aromatic). The neutral [8]circulenes can be considered nonaromatic, because the sum of the ring-current strengths of the hub and the rim almost vanishes. The aromatic character of the doubly charged [8]circulenes is completely different: the dianionic [8]circulenes and the OC-, CH-, CH2-, SiH-, GeH-, SiH2-, and GeH2-containing dicationic species sustain net diatropic ring currents i.e., they are aromatic, whereas the O-, S-, Se-, NH-, PH- and AsH-containing dicationic [8]circulenes are strongly antiaromatic. The present study also shows that GIMIC calculations on the [8]circulenes provide more accurate information about the aromatic character than that obtained using local indices such as nuclear-independent chemical shifts (NICSs) and H-1 NMR chemical shifts.Peer reviewe
    corecore