811 research outputs found

    Anti-inflammatory effect and mechanism of action of Lindera erythrocarpa essential oil in lipopolysaccharide-stimulated RAW264.7 cells

    Get PDF
    The aim of this study was to investigate the chemical constituents of Lindera erythrocarpa essential oil (LEO) by gas chromatography-mass spectrometry and evaluate their inhibitory effect on the expression of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Fifteen compounds, accounting for 63.7 % of the composition of LEO, were identified. The main compounds were nerolidol (18.73 %), caryophyllene (14.41 %), α-humulene (7.73 %), germacrene-D (4.82 %), and α-pinene (4.47 %). LEO significantly inhibited the expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, and subsequent production of NO and prostaglandin E2. In addition, it reduced the release of pro-inflammatory cytokines in LPS-activated RAW264.7 cells. The molecular mechanism underlying the effect of LEO was associated with inhibition of the phosphorylation of mitogen-activated protein kinase (MAPK). Furthermore, LEO inhibited LPS-induced phosphorylation and degradation of inhibitor of kappa B-α, which is required for the activation of the p50 and p65 nuclear factor (NF)-ÎșB subunits in RAW264.7 cells. Taken together, these data suggest that LEO exerted its anti-inflammatory effect by downregulating LPS-induced production of pro-inflammatory mediators through the inhibition of NF-ÎșB and MAPK signaling in RAW264.7 cells

    High-Performance Screen-Printed Thermoelectric Films on Fabrics.

    Get PDF
    Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi0.5Sb1.5Te3 or n-type Bi2Te2.7Se0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively

    Modeling of Nonlinear Aggregation for Information Fusion Systems with Outliers Based on the Choquet Integral

    Get PDF
    Modern information fusion systems essentially associate decision-making processes with multi-sensor systems. Precise decision-making processes depend upon aggregating useful information extracted from large numbers of messages or large datasets; meanwhile, the distributed multi-sensor systems which employ several geographically separated local sensors are required to provide sufficient messages or data with similar and/or dissimilar characteristics. These kinds of information fusion techniques have been widely investigated and used for implementing several information retrieval systems. However, the results obtained from the information fusion systems vary in different situations and performing intelligent aggregation and fusion of information from a distributed multi-source, multi-sensor network is essentially an optimization problem. A flexible and versatile framework which is able to solve complex global optimization problems is a valuable alternative to traditional information fusion. Furthermore, because of the highly dynamic and volatile nature of the information flow, a swift soft computing technique is imperative to satisfy the demands and challenges. In this paper, a nonlinear aggregation based on the Choquet integral (NACI) model is considered for information fusion systems that include outliers under inherent interaction among feature attributes. The estimation of interaction coefficients for the proposed model is also performed via a modified algorithm based on particle swarm optimization with quantum-behavior (QPSO) and the high breakdown value estimator, least trimmed squares (LTS). From simulation results, the proposed MQPSO algorithm with LTS (named LTS-MQPSO) readily corrects the deviations caused by outliers and swiftly achieves convergence in estimating the parameters of the proposed NACI model for the information fusion systems with outliers

    Percutaneous aspiration of lumbar zygapophyseal joint synovial cyst under fluoroscopic guidance -A case report-

    Get PDF
    A 51-year-old man with a 1-month history of lower back pain and radiating pain visited to our pain clinic. A magnetic resonance imaging (MRI) scan demonstrated a cyst like mass at the level of the L4-5 interspace and compression of the thecal sac and the nerve root on the right side. We performed percutaneous needle aspiration of the lumbar zygapophyseal joint synovial cyst under fluoroscopic guidance. The patient felt an immediate relief of symptoms after the aspiration, and had no signs or symptoms of recurrence at the follow-up 6 months later. No demonstrable lesion was found in the 6 months follow-up MRI

    Combination of Antiemetics for the Prevention of Postoperative Nausea and Vomiting in High-Risk Patients

    Get PDF
    It was previously reported that the Korean predictive model could be used to identify patients at high risk of postoperative nausea and vomiting (PONV). This study investigated whether PONV in the high-risk and very high-risk patients identified by the Korean predictive model could be prevented by multiple prophylactic antiemetics. A total of 2,456 patients were selected from our previous PONV study and assigned to the control group, and 374 new patients were recruited consecutively to the treatment group. Patients in each group were subdivided into two risk groups according to the Korean predictive model: high-risk group and very high-risk group. Patients in the treatment group received an antiemetic combination of dexamethasone 5 mg (minutes after induction) and ondansetron 4 mg (30 min before the end of surgery). The incidences of PONV were examined at two hours after the surgery in the postanesthetic care unit and, additionally, at 24 hr after the surgery in the ward, and were analyzed for any differences between the control and treatment groups. The overall incidence of PONV decreased significantly from 52.1% to 23.0% (p≀0.001) after antiemetic prophylaxis. Specifically, the incidence decreased from 47.3% to 19.4% (p≀0.001) in the high-risk group and from 61.3% to 28.3% (p≀0.001) in the very high-risk group. Both groups showed a similar degree of relative risk reductions: 59.0% vs. 53.8% in the high-risk and very high-risk groups, respectively. The results of our study showed that the antiemetic prophylaxis with the combination of dexamethasone and ondansetron was effective in reducing the occurrence of PONV in both high-risk and very high-risk patients

    Inactivated vaccine with glycyrrhizic acid adjuvant elicits potent innate and adaptive immune responses against foot-and-mouth disease

    Get PDF
    BackgroundFoot-and-mouth disease (FMD) is an extremely contagious viral disease that is fatal to young animals and is a major threat to the agricultural economy by reducing production and limiting the movement of livestock. The currently commercially-available FMD vaccine is prepared using an inactivated viral antigen in an oil emulsion, with aluminum hydroxide [Al(OH)3] as an adjuvant. However, oil emulsion-based options possess limitations including slow increases in antibody titers (up to levels adequate for defense against viral infection) and risks of local reactions at the vaccination site. Further, Al(OH)3 only induces a T helper 2 (Th2) cell response. Therefore, novel adjuvants that can address these limitations are urgently needed. Glycyrrhizic acid (extracted from licorice roots) is a triterpenoid saponin and has great advantages in terms of price and availability.MethodsTo address the limitations of the currently used commercial FMD vaccine, we added glycyrrhizic acid as an adjuvant (immunostimulant) to the FMD bivalent (O PA2 + A YC) vaccine. We then evaluated its efficacy in promoting both innate and adaptive (cellular and humoral) immune reactions in vitro [using murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs)] and in vivo (using mice and pigs).ResultsGlycyrrhizic acid has been revealed to induce an innate immune response and enhance early, mid-, and long-term immunity. The studied bivalent vaccine with glycyrrhizic acid increased the expression of immunoregulatory genes such as pattern-recognition receptors (PRRs), cytokines, transcription factors, and co-stimulatory molecules.ConclusionCollectively, glycyrrhizic acid could have utility as a novel vaccine adjuvant that can address the limitations of commercialized FMD vaccines by inducing potent innate and adaptive immune responses

    Admission levels of high-density lipoprotein and apolipoprotein A-1 are associated with the neurologic outcome in patients with out-of-hospital cardiac arrest

    Get PDF
    Objective To investigate whether serum levels of high-density lipoprotein (HDL) and apolipoprotein A-1 (ApoA1), after the return of spontaneous circulation, can predict the neurologic outcome in patients with out-of-hospital cardiac arrest (OHCA). Methods This was a retrospective observational study conducted in a single tertiary hospital intensive care unit. All adult OHCA survivors with admission lipid profiles were enrolled from March 2013 to December 2015. Good neurologic outcome was defined as discharge cerebral performance categories 1 and 2. Results Among 59 patients enrolled, 13 (22.0%) had a good neurologic outcome. Serum levels of HDL (56.7 vs. 40 mg/dL) and ApoA1 (117 vs. 91.6 mg/dL) were significantly higher in patients with a good outcome. Areas under the HDL and ApoA1 receiver operating curves to predict good outcomes were 0.799 and 0.759, respectively. The proportion of good outcome was significantly higher in patients in higher tertiles of HDL and ApoA1 (test for trend, both P=0.003). HDL (P=0.018) was an independent predictor in the multivariate logistic regression model. Conclusion Admission levels of HDL and ApoA1 are associated with neurologic outcome in patients with OHCA. Prognostic and potential therapeutic values of HDL and ApoA1 merit further evaluation in the post-cardiac arrest state, as in other systemic inflammatory conditions such as sepsis

    Dectin-1 signaling coordinates innate and adaptive immunity for potent host defense against viral infection

    Get PDF
    BackgroundMost commercial foot-and-mouth disease (FMD) vaccines have various disadvantages, such as low antibody titers, short-lived effects, compromised host defense, and questionable safety.ObjectivesTo address these shortcomings, we present a novel FMD vaccine containing Dectin-1 agonist, ÎČ-D-glucan, as an immunomodulatory adjuvant. The proposed vaccine was developed to effectively coordinate innate and adaptive immunity for potent host defense against viral infection.MethodsWe demonstrated ÎČ-D-glucan mediated innate and adaptive immune responses in mice and pigs in vitro and in vivo. The expressions of pattern recognition receptors, cytokines, transcription factors, and co-stimulatory molecules were promoted via FMD vaccine containing ÎČ-D-glucan.ResultsÎČ-D-glucan elicited a robust cellular immune response and early, mid-, and long-term immunity. Moreover, it exhibited potent host defense by modulating host’s innate and adaptive immunity.ConclusionOur study provides a promising approach to overcoming the limitations of conventional FMD vaccines. Based on the proposed vaccine’s safety and efficacy, it represents a breakthrough among next-generation FMD vaccines

    SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion

    Get PDF
    Synaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development through cis inhibition of SALM3, another SALM family protein with synaptogenic activity. Salm4-mutant (Salm4) mice show increased excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly, deletion of Salm3 in Salm4 mice (Salm3, Salm4) normalizes the increased excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory synapses via cis inhibition of the trans-synaptic SALM3-LAR adhesion. © The Author(s) 2016110101sciescopu
    • 

    corecore