753 research outputs found

    Metal–organic frameworks in proton-exchange membrane for intermediate-to-high-temperature fuel-cell applications: a review

    Get PDF
    A proton-exchange membrane (PEM) is a vital component in fuel cells as a solid electrolyte that conducts ions. The high cost and degradation of Nafion® membrane in low-temperature fuel cells limits the technology’s commercialization. The development of intermediate (IT-PEMFCs) to high-temperature (HT-PEMFCs) fuel cells operating within the range of 80–200 °C has made progress over the last few decades, and improvements in water management addressing the issues of low-temperature PEMFCs have been observed. However, these types of PEM fuel cells (IT-PEMFCs and HT-PEMFCs) still face considerable challenges, such as unsatisfactory performance stability at high temperatures. Particularly, in HT-PEMFC, despite the high acid doping level (ADL) in membranes as a potential means to improve proton conductivity, high ADL decreases the membrane’s mechanical stability. Recently, metal–organic frameworks (MOFs) have achieved satisfactory results in applications of PEM modification. This manuscript reviews the development in applying MOFs in improving the properties of composite membranes in IT- and HT-PEMFCs by using SPEEK and PBI, respectively. The synthesis strategies using MOFs in the PEM are discussed together with the electrochemical properties obtained. The success of incorporating of MOFs into PEMs could shed light on the synthesis of new-generation IT- and HT-PEMFCs, which could improve several properties such as mechanical and thermal stability, oxidative stability, and acid-retention capacity

    The immediate effect of backward walking on external knee adduction moment in healthy individuals

    Get PDF
    Backward walking (BW) has been recommended as a rehabilitation intervention to prevent, manage, or improve diseases. However, previous studies showed that BW significantly increased the first vertical ground reaction force (GRF) during gait, which might lead to higher loading at the knee. Published reports have not examined the effects of BW on medial compartment knee loading. The objective of this study was to investigate the effects of BW on external knee adduction moment (EKAM). Twenty-seven healthy adults participated in the present study. A sixteen-camera three-dimensional VICON gait analysis system, with two force platforms, was used to collect the EKAM, KAAI, and other biomechanical data during BW and forward walking (FW). The first () and second () EKAM peaks and KAAI () were significantly decreased during BW when compared with FW. The BW significantly decreased the lever arm length at the first EKAM peak () when compared with FW. In conclusion, BW was found to be a useful strategy for reducing the medial compartment knee loading even though the first peak ground reaction force was significantly increased

    Comparative genomics reveals the hybrid origin of a macaque group

    Get PDF
    Although species can arise through hybridization, compelling evidence for hybrid speciation has been reported only rarely in animals. Here, we present phylogenomic analyses on genomes from 12 macaque species and show that the fascicularis group originated from an ancient hybridization between the sinica and silenus groups ~3.45 to 3.56 million years ago. The X chromosomes and low-recombination regions exhibited equal contributions from each parental lineage, suggesting that they were less affected by subsequent backcrossing and hence could have played an important role in maintaining hybrid integrity. We identified many reproduction-associated genes that could have contributed to the development of the mixed sexual phenotypes characteristic of the fascicularis group. The phylogeny within the silenus group was also resolved, and functional experimentation confirmed that all extant Western silenus species are susceptible to HIV-1 infection. Our study provides novel insights into macaque evolution and reveals a hybrid speciation event that has occurred only very rarely in primates

    The C-Terminus of Histone H2B Is Involved in Chromatin Compaction Specifically at Telomeres, Independently of Its Monoubiquitylation at Lysine 123

    Get PDF
    Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Model-independent search for the presence of new physics in events including H → γγ with s \sqrt{s} = 13 TeV pp data recorded by the ATLAS detector at the LHC

    Get PDF
    Abstract A model-independent search for new physics leading to final states containing a Higgs boson, with a mass of 125.09 GeV, decaying to a pair of photons is performed with 139 fb−1 of s s \sqrt{s} = 13 TeV pp collision data recorded by the ATLAS detector at the Large Hadron Collider at CERN. This search examines 22 final states categorized by the objects that are produced in association with the Higgs boson. These objects include isolated electrons or muons, hadronically decaying τ-leptons, additional photons, missing transverse momentum, and hadronic jets, as well as jets that are tagged as containing a b-hadron. No significant excesses above Standard Model expectations are observed and limits on the production cross section at 95% confidence level are set. Detector efficiencies are reported for all 22 signal regions, which can be used to convert detector-level cross-section limits reported in this paper to particle-level cross-section constraints
    corecore