1,865 research outputs found

    Generating functional analysis of CDMA detection dynamics

    Get PDF
    We investigate the detection dynamics of the parallel interference canceller (PIC) for code-division multiple-access (CDMA) multiuser detection, applied to a randomly spread, fully syncronous base-band uncoded CDMA channel model with additive white Gaussian noise (AWGN) under perfect power control in the large-system limit. It is known that the predictions of the density evolution (DE) can fairly explain the detection dynamics only in the case where the detection dynamics converge. At transients, though, the predictions of DE systematically deviate from computer simulation results. Furthermore, when the detection dynamics fail to convergence, the deviation of the predictions of DE from the results of numerical experiments becomes large. As an alternative, generating functional analysis (GFA) can take into account the effect of the Onsager reaction term exactly and does not need the Gaussian assumption of the local field. We present GFA to evaluate the detection dynamics of PIC for CDMA multiuser detection. The predictions of GFA exhibits good consistency with the computer simulation result for any condition, even if the dynamics fail to convergence.Comment: 14 pages, 3 figure

    The path-integral analysis of an associative memory model storing an infinite number of finite limit cycles

    Full text link
    It is shown that an exact solution of the transient dynamics of an associative memory model storing an infinite number of limit cycles with l finite steps by means of the path-integral analysis. Assuming the Maxwell construction ansatz, we have succeeded in deriving the stationary state equations of the order parameters from the macroscopic recursive equations with respect to the finite-step sequence processing model which has retarded self-interactions. We have also derived the stationary state equations by means of the signal-to-noise analysis (SCSNA). The signal-to-noise analysis must assume that crosstalk noise of an input to spins obeys a Gaussian distribution. On the other hand, the path-integral method does not require such a Gaussian approximation of crosstalk noise. We have found that both the signal-to-noise analysis and the path-integral analysis give the completely same result with respect to the stationary state in the case where the dynamics is deterministic, when we assume the Maxwell construction ansatz. We have shown the dependence of storage capacity (alpha_c) on the number of patterns per one limit cycle (l). Storage capacity monotonously increases with the number of steps, and converges to alpha_c=0.269 at l ~= 10. The original properties of the finite-step sequence processing model appear as long as the number of steps of the limit cycle has order l=O(1).Comment: 24 pages, 3 figure

    Statistical mechanics of lossy compression using multilayer perceptrons

    Full text link
    Statistical mechanics is applied to lossy compression using multilayer perceptrons for unbiased Boolean messages. We utilize a tree-like committee machine (committee tree) and tree-like parity machine (parity tree) whose transfer functions are monotonic. For compression using committee tree, a lower bound of achievable distortion becomes small as the number of hidden units K increases. However, it cannot reach the Shannon bound even where K -> infty. For a compression using a parity tree with K >= 2 hidden units, the rate distortion function, which is known as the theoretical limit for compression, is derived where the code length becomes infinity.Comment: 12 pages, 5 figure

    On topological phases of spin chains

    Full text link
    Symmetry protected topological phases of one-dimensional spin systems have been classified using group cohomology. In this paper, we revisit this problem for general spin chains which are invariant under a continuous on-site symmetry group G. We evaluate the relevant cohomology groups and find that the topological phases are in one-to-one correspondence with the elements of the fundamental group of G if G is compact, simple and connected and if no additional symmetries are imposed. For spin chains with symmetry PSU(N)=SU(N)/Z_N our analysis implies the existence of N distinct topological phases. For symmetry groups of orthogonal, symplectic or exceptional type we find up to four different phases. Our work suggests a natural generalization of Haldane's conjecture beyond SU(2).Comment: 18 pages, 7 figures, 2 tables. Version v2 corresponds to the published version. It includes minor revisions, additional references and an application to cold atom system

    Error correcting code using tree-like multilayer perceptron

    Full text link
    An error correcting code using a tree-like multilayer perceptron is proposed. An original message \mbi{s}^0 is encoded into a codeword \boldmath{y}_0 using a tree-like committee machine (committee tree) or a tree-like parity machine (parity tree). Based on these architectures, several schemes featuring monotonic or non-monotonic units are introduced. The codeword \mbi{y}_0 is then transmitted via a Binary Asymmetric Channel (BAC) where it is corrupted by noise. The analytical performance of these schemes is investigated using the replica method of statistical mechanics. Under some specific conditions, some of the proposed schemes are shown to saturate the Shannon bound at the infinite codeword length limit. The influence of the monotonicity of the units on the performance is also discussed.Comment: 23 pages, 3 figures, Content has been extended and revise

    The Cavity Approach to Parallel Dynamics of Ising Spins on a Graph

    Full text link
    We use the cavity method to study parallel dynamics of disordered Ising models on a graph. In particular, we derive a set of recursive equations in single site probabilities of paths propagating along the edges of the graph. These equations are analogous to the cavity equations for equilibrium models and are exact on a tree. On graphs with exclusively directed edges we find an exact expression for the stationary distribution of the spins. We present the phase diagrams for an Ising model on an asymmetric Bethe lattice and for a neural network with Hebbian interactions on an asymmetric scale-free graph. For graphs with a nonzero fraction of symmetric edges the equations can be solved for a finite number of time steps. Theoretical predictions are confirmed by simulation results. Using a heuristic method, the cavity equations are extended to a set of equations that determine the marginals of the stationary distribution of Ising models on graphs with a nonzero fraction of symmetric edges. The results of this method are discussed and compared with simulations

    Dynamical replica theoretic analysis of CDMA detection dynamics

    Full text link
    We investigate the detection dynamics of the Gibbs sampler for code-division multiple access (CDMA) multiuser detection. Our approach is based upon dynamical replica theory which allows an analytic approximation to the dynamics. We use this tool to investigate the basins of attraction when phase coexistence occurs and examine its efficacy via comparison with Monte Carlo simulations.Comment: 18 pages, 2 figure

    Statistical mechanics of lossy compression for non-monotonic multilayer perceptrons

    Full text link
    A lossy data compression scheme for uniformly biased Boolean messages is investigated via statistical mechanics techniques. We utilize tree-like committee machine (committee tree) and tree-like parity machine (parity tree) whose transfer functions are non-monotonic. The scheme performance at the infinite code length limit is analyzed using the replica method. Both committee and parity treelike networks are shown to saturate the Shannon bound. The AT stability of the Replica Symmetric solution is analyzed, and the tuning of the non-monotonic transfer function is also discussed.Comment: 29 pages, 7 figure

    Symmetric sequence processing in a recurrent neural network model with a synchronous dynamics

    Full text link
    The synchronous dynamics and the stationary states of a recurrent attractor neural network model with competing synapses between symmetric sequence processing and Hebbian pattern reconstruction is studied in this work allowing for the presence of a self-interaction for each unit. Phase diagrams of stationary states are obtained exhibiting phases of retrieval, symmetric and period-two cyclic states as well as correlated and frozen-in states, in the absence of noise. The frozen-in states are destabilised by synaptic noise and well separated regions of correlated and cyclic states are obtained. Excitatory or inhibitory self-interactions yield enlarged phases of fixed-point or cyclic behaviour.Comment: Accepted for publication in Journal of Physics A: Mathematical and Theoretica
    corecore