We investigate the detection dynamics of the parallel interference canceller
(PIC) for code-division multiple-access (CDMA) multiuser detection, applied to
a randomly spread, fully syncronous base-band uncoded CDMA channel model with
additive white Gaussian noise (AWGN) under perfect power control in the
large-system limit. It is known that the predictions of the density evolution
(DE) can fairly explain the detection dynamics only in the case where the
detection dynamics converge. At transients, though, the predictions of DE
systematically deviate from computer simulation results. Furthermore, when the
detection dynamics fail to convergence, the deviation of the predictions of DE
from the results of numerical experiments becomes large. As an alternative,
generating functional analysis (GFA) can take into account the effect of the
Onsager reaction term exactly and does not need the Gaussian assumption of the
local field. We present GFA to evaluate the detection dynamics of PIC for CDMA
multiuser detection. The predictions of GFA exhibits good consistency with the
computer simulation result for any condition, even if the dynamics fail to
convergence.Comment: 14 pages, 3 figure