16 research outputs found

    Kinetics and molecular mechanisms of the plasma membrane glutamate transport

    Get PDF
    In dieser Arbeit wurden die neuronalen Glutamattransporter EAAT4 (Excitatory Amino Acid Transporter) und EAAT3 in einem HEK (Human Embryonic Kidney) Zellsystem untersucht, in dem die Transporter transient exprimiert wurden. Diese Proteine katalysieren den Transport von Glutamat entgegen des Konzentrationsgradienten aus dem ExtrazellulĂ€rraum in das Zytosol. Die Energie des Transports, stammt aus dem Kotransport von Natriumionen und Protonen und dem Gegentransport von Kaliumionen. FĂŒr EAAT3 ist bekannt, dass das VerhĂ€ltnis 3 Na+:1 H+:1 Glutamat:1 K+ betrĂ€gt, wodurch 2 positive Ladungen pro Transportzyklus verschoben werden. Das fĂŒhrt zu einem messbaren positiven EinwĂ€rtststrom. Dieser Strom ist fĂŒr EAAT4 wesentlich schwĂ€cher und die Stöchiometrie ist unbekannt. Beide Proteine besitzen eine Anionenkanaleigenschaft, die bei der Bindung von Na+ und der Bindung von Glutamat voll aktiviert wird. Diese Eigenschaft ist bei EAAT4 besonders ausgeprĂ€gt. Die Transporter wurden in AbhĂ€ngigkeit von verschiedenen intra- und extrazellulĂ€ren Ionen- und Substratkompositionen, sowie bestimmter Potentialen und der Temperatur elektrophysiologisch charakterisiert. Die Charakterisierung der stationĂ€ren Eigenschaften des wenig bekannten Transporters EAAT4 brachten Erkenntnisse zu Tage, die 1) Klarheit ĂŒber die apparenteAffinitĂ€ten der Substrate, insbesondere Glutamat und Na+ bringen 2) neu in Bezug auf die SpannungsabhĂ€ngigkeit der apparenten AffinitĂ€t von Glutamat sind. Die Untersuchung der vorstationĂ€ren Ableitungen waren fruchtbar in Bezug auf a) die Ähnlichkeit des Transports, der durch EAAT4 katalysiert wird, zu anderen Glutamattransporter b) spezifische Parameter des Transports, wie den Unterschied in der Transportgeschwindigkeit c) die neuartige Kinetik der AnionenleitfĂ€higkeit. Aus den Daten ergibt sich folgendes Bild ĂŒber den Mechanismus des Transports. Die Substrate binden an EAAT4, im Vergleich zu den anderen Transportern, mit wesentlich höheren Km [ (0,6 ± 0,1)”M fĂŒr Glutamat und (42,3 ± 5,2)mM fĂŒr Na+]. Die Bindung von Glutamat, die schnell verlĂ€uft, ist, wie bei EAAT3, stark Na+ abhĂ€ngig, genau wie die LeckleitfĂ€higkeit, die ebenfalls durch Na+ aktiviert wird. Die folgenden glutamatabhĂ€ngigen, vorstationĂ€ren Reaktionen, inklusive der Translokation der Substrate verlĂ€uft wesentlich langsamer, als in anderen Transportersubtypen. Die Folge ist eine geringe Umsatzrate (<3 1/s) und daher ein geringer Transportstrom [(-3,6 ± 2,8)pA]. Die Daten zeigen, dass EAAT4 trotzallem denselben prinzipiellen Mechanismus, wie die anderen Subtypen folgt. Das Verhalten der AnionenleitfĂ€higkeit zeigt allerdings erhebliche Unterschiede zu anderen Subtypen, da die AnionenleitfĂ€higkeit durch negative Membranpotentiale inhibiert wird. Dies wird durch die Inhibierung der K+-Relokationsreaktion des Transporters erklĂ€rt. Zusammengenommen spricht die geringe Umsatzrate und die hohe apparente AffinitĂ€t fĂŒr Glutamat dafĂŒr, dass EAAT4 ein hochspezialisierter Transporter fĂŒr die schnelle Pufferung von Glutamat und den langfristigen Transport von Glutamat bei niedrigen Konzentrationen ist. Im zweiten Teil dieser Arbeit wurde die TemperaturabhĂ€ngigkeit des Glutamattransports durch EAAT3 untersucht. Die TemperaturabhĂ€ngigkeit des Transports unter stationĂ€ren Bedingungen zeigte interessante neue Ergebnisse. Die Ergebnisse lassen Aussagen zu bezĂŒglich 1) der Thermodynamik der Bindung der Substrate und 2) der molekularen Natur bestimmter Teilreaktionen im Zyklus Die Bindung eines nicht-transportierbaren Glutamatanalogons zeigt, dass die Inhibitorbindung exotherm ist (H = 30,0 ± 3,3)kJ/mol. Die Bindung von Na+ an den unbeladenen Transporter ist im Gegensatz dazu nicht signifikant von der Temperatur abhĂ€ngig mit H = (20,8 ± 21,5)kJ/mol. Es ist ebenfalls interessant, dass die Freie Enthalpie des Gesamtzyklus beiEAAT4 signifikant grösser ist als bei EAAT3, was in Übereinstimmung mit der höheren, apparenten GlutamataffinitĂ€t ist [GEAAT4 = (35 ± 1)kJ/mol vs. .GEAAT3 = (30 ±1)kJ/mol]. Die TemperaturabhĂ€ngigkeit der vorstationĂ€ren Kinetik von EAAT3 enthĂŒllt gleichfalls neue Ergebnisse. Zum einen ist die Bindung des Na+ Ions and den unbeladenen Transporter mit einer KonformationsĂ€nderung begleitet. Im Gegensatz dazu hat die Reaktion, die der Glutamatbindung zugeordnet wurde, nur eine moderate Aktivierungsenthalpie [H‡ = (39 ± 23 )kJ/mol], wie fĂŒr eine diffusionskontrollierte Reaktion erwartet wird. Die nachfolgenden zwei langsameren Phasen des Transportstroms, die in der Literatur der Aktivierung der AnionenleitfĂ€higkeit und der Glutamattranslokation zugeordnet wurden, sind mit hohen Aktivierungsenthalpien verbunden [H‡ = (121 ± 12)kJ/mol bzw. (94 ± 4)kJ/mol]. Dies bedeutet zum einen, dass zur Öffnung des Anionenkanals und der Translokation von Glutamat eine grössere Umstrukturierung des Transporters notwendig ist. Durch die hier gefundenen, neuen Daten fĂŒr die Translokationsgeschwindigkeit bei physiologischen Temperaturen kann die Hypothese in Frage gestellt werden, die besagt, dass Glutamattransporter nicht schnell genug seien, um zur schnellen Entfernung des Glutamats nach der synaptischen Transmission beizutragen. Es scheint vielmehr so, dass bei physiologischen Temperaturen und Membranpotentialen, die Translokation von Glutamat hinreichend schnell verlĂ€uft.In this work I investigated the neuronal glutamate transporters EAAT3 and EAAT4 in an Human Embryonic Kidney cell line, where they have been transfected transiently. These proteins catalyse the transport of glutamate from the extracellular space into the cytosol. The energy for this comes from the cotransport from sodium ions and protons and the antiport of potassium ions. For EAAT3 it is known that the transport ratio is 3 Na+:1 H+:1 glutamate:1 K+. That means that 2 positive charges are tranferred over the membrane which generates a measurable inward current. This current is rather weak in EAAT4 and the stoichometry in this protein is unknown too. EAAT3 as well as EAAT4 comprise an anion conductivity which is fully activated when glutamate and Na+ is bound to the protein. This property is is prominent in EAAT4. The transporter have been characterised by varying intra- and extracellular ion and substrate composition and by means of electrophysiological techniques. The influence of membrane potential and temperature was investigated as well. The characterisation of the stationary properties of the transporter EAAT4 gave new insights of 1) the apparent affinity of the substrates, in particular glutamate and Na+ 2) the voltage dependency of the apparent affinity for glutamate. The presteady state recordings helped to answer questions with regard to a) the transport mechanism of EAAT4 b) specific transport parameters like differences of the transport rate or c) the novel kinetic of the anion conductance. The substrates that bind to EAAT4 have higher Km compared to other subtypes [ (0.6 ± 0.1)”M for glutamate and (42.3 ± 5.2)mM for Na+]. Like EAAT3 binding of glutamate and activation of the anion conductance is Na+ dependent in EAAT4. The following glutamate dependent, prestationary reactions, including the glutamate translocation, are slow compared to other subtypes. This results in a slow turnover rate (<3 1/s) and thus a slow transport current. The results show that transport in EAAT4 follows the same principles like any other subtypes. The behavior of the anion conductance shows significant differences. This conductance is inhibited by negative membrane potentials. The inhibition is caused by the K+ relocation reaction within the transport cycle. The low turnover rate and the high aparent affinity for glutamate identifies EAAT4 as a highly specialised transporter that buffers and binds glutamate effectively and keeps the glutamate concentrations low in the extracellular space. In the second part of my work I investigated the temperature dependence of glutamate transport in EAAT3. The results allow conclusions on 1) the thermodynamics of the substrate binding reactions 2) and the molecular nature of particular partial reactions. The binding of a non-transportable glutamate analogue shows that the binding reation is exothermic [(H = 30.0 ± 3.3)kJ/mol]. By contrast binding of Na+ to the empty transporter does not significantly change with temperature [H = (20.8 ± 21.5)kJ/mol]. Further it is interesting that the Free Enthalpy of the whole cyle of EAAT4 is significantly bigger than in EAAT3, which is in line with the higher aparent glutamate affinity [GEAAT4 = (35 ± 1)kJ/mol vs. GEAAT3 = (30 ±1)kJ/mol]. The temperature dependence of the prestationary kinetics for EAAT3 reveals novel properties. First the binding of Na+ to the empty transporter is accompanied with a moderate conformational change. Whereas glutamate binding is accompanied with a low activation enthalpy [H‡ = (39 ± 23 )kJ/mol], which is specific for a diffusion controlled reaction. The subsequent two slower phases of the transport current, assigned to the activation of the anion conductance and glutamate translocation respective, are related to an high actiavtion enthalpy [H‡ = (121 ± 12)kJ/mol vs (94 ± 4)kJ/mol resp.]. This means that the opening of the anion channel and the translocation of glutamate is accompanied with a larger reorganisation of the transporter. The experimental data for the translocation rate challenge the hypothesis that glutamate transporters are to slow to contribute significantly to the removal of glutamate after the synaptic transmission. It seems that the translocation is at physiological temperatures and potentials fast enough to perform this function

    The Glutamate Transporter Subtypes EAAT4 and EAATs 1-3 Transport Glutamate with Dramatically Different Kinetics and Voltage Dependence but Share a Common Uptake Mechanism

    Get PDF
    Here, we report the application of glutamate concentration jumps and voltage jumps to determine the kinetics of rapid reaction steps of excitatory amino acid transporter subtype 4 (EAAT4) with a 100-ÎŒs time resolution. EAAT4 was expressed in HEK293 cells, and the electrogenic transport and anion currents were measured using the patch-clamp method. At steady state, EAAT4 was activated by glutamate and Na+ with high affinities of 0.6 ÎŒM and 8.4 mM, respectively, and showed kinetics consistent with sequential binding of Na+-glutamate-Na+. The steady-state cycle time of EAAT4 was estimated to be >300 ms (at −90 mV). Applying step changes to the transmembrane potential, Vm, of EAAT4-expressing cells resulted in the generation of transient anion currents (decaying with a τ of ∌15 ms), indicating inhibition of steady-state EAAT4 activity at negative voltages (<−40 mV) and activation at positive Vm (>0 mV). A similar inhibitory effect at Vm < 0 mV was seen when the electrogenic glutamate transport current was monitored, resulting in a bell-shaped I-Vm curve. Jumping the glutamate concentration to 100 ÎŒM generated biphasic, saturable transient transport and anion currents (Km ∌ 5 ÎŒM) that decayed within 100 ms, indicating the existence of two separate electrogenic reaction steps. The fast electrogenic reaction was assigned to Na+ binding to EAAT4, whereas the second reaction is most likely associated with glutamate translocation. Together, these results suggest that glutamate uptake of EAAT4 is based on the same molecular mechanism as transport by the subtypes EAATs 1–3, but that its kinetics and voltage dependence are dramatically different from the other subtypes. EAAT4 kinetics appear to be optimized for high affinity binding of glutamate, but not rapid turnover. Therefore, we propose that EAAT4 is a high-affinity/low-capacity transport system, supplementing low-affinity/high-capacity synaptic glutamate uptake by the other subtypes

    CryoEM reveals BIN1 (isoform 8) does not bind to single actinfilaments in vitro

    No full text
    Cells change their appearance by a concerted action of the cytoskeleton and the plasma membrane. The machinery thatbends the membrane includes Bin/Amphiphysin/Rvs (BAR) domain proteins. Recently BAR domain proteins garneredattention as actin regulators, either by recruiting actin regulating proteins or through binding to actin directly. BIN1 (animportant protein in Alzheimer’s Disease, heart disease and cancer) is one of the few BAR proteins that bind to actindirectly. Here, we imaged a complex of BIN1 and actin with cryoEM. Our results reveal that BIN1 cannot be found onsingle actin filaments.QC 20211110</p

    Coming of Age: Cryo-Electron Tomography as a Versatile Tool to Generate High-Resolution Structures at Cellular/Biological Interfaces

    No full text
    Over the last few years, cryo electron microscopy has become the most important methodin structural biology. While 80% of deposited maps are from single particle analysis, electrontomography has grown to become the second most important method. In particular sub-tomogramaveraging has matured as a method, delivering structures between 2 and 5 Å from complexes in cellsas well as in vitro complexes. While this resolution range is not standard, novel developments pointtoward a promising future. Here, we provide a guide for the workflow from sample to structure togain insight into this emerging field.QC 20211110</p

    Structure versus function Are new conformations of pannexin 1 yet to be resolved?

    No full text
    Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel

    Understanding the Role of Amphipathic Helices in N-BAR Domain Driven Membrane Remodeling

    Get PDF
    AbstractEndophilin N-BAR (N-terminal helix and Bin/amphiphysin/Rvs) domain tubulates and vesiculates lipid membranes in vitro via its crescent-shaped dimer and four amphipathic helices that penetrate into membranes as wedges. Like F-BAR domains, endophilin N-BAR also forms a scaffold on membrane tubes. Unlike F-BARs, endophilin N-BARs have N-terminal H0 amphipathic helices that are proposed to interact with other N-BARs in oligomer lattices. Recent cryo-electron microscopy reconstructions shed light on the organization of the N-BAR lattice coats on a nanometer scale. However, because of the resolution of the reconstructions, the precise positioning of the amphipathic helices is still ambiguous. In this work, we applied a coarse-grained model to study various membrane remodeling scenarios induced by endophilin N-BARs. We found that H0 helices of N-BARs prefer to align in an antiparallel manner at two ends of the protein to form a stable lattice. The deletion of H0 helices causes disruption of the lattice. In addition, we analyzed the persistence lengths of the protein-coated tubes and found that the stiffness of endophilin N-BAR-coated tubules qualitatively agrees with previous experimental work studying N-BAR-coated tubules. Large-scale simulations on membrane liposomes revealed a systematic relation between H0 helix density and local membrane curvature fluctuations. The data also suggest that the H0 helix is required for BARs to form organized structures on the liposome, further illustrating its important function

    Silk Assembly against Hydrophobic Surfaces?Modeling and Imaging of Formation of Nanofibrils

    No full text
    A detailed insight about the molecular organization behind spider silk assembly is valuable for the decoding of the unique properties of silk. The recombinant partial spider silk protein 4RepCT contains four poly-alanine/glycine-rich repeats followed by an amphiphilic C-terminal domain and has shown the capacity to self-assemble into fibrils on hydrophobic surfaces. We herein use molecular dynamic simulations to address the structure of 4RepCT and its different parts on hydrophobic versus hydrophilic surfaces. When 4RepCT is placed in a wing arrangement model and periodically repeated on a hydrophobic surface, fi-sheet structures of the poly-alanine repeats are preserved, while the CT part is settled on top, presenting a fibril with a height of similar to 7 nm and a width of similar to 11 nm. Both atomic force microscopy and cryo-electron microscopy imaging support this model as a possible fibril formation on hydrophobic surfaces. These results contribute to the understanding of silk assembly and alignment mechanism onto hydrophobic surfaces
    corecore