1,371 research outputs found
Automatic Occupant restraints and Judicial Review: How a Federal Agency Can Violate Congressional Will and Get Away with It
Bacterial infections in neonates following mupirocin-based MRSA decolonization: A multicenter cohort study
OBJECTIVETo characterize the risk of infection after MRSA decolonization with intranasal mupirocin.DESIGNMulticenter, retrospective cohort study.SETTINGTertiary care neonatal intensive care units (NICUs) from 3 urban hospitals in the United States ranging in size from 45 to 100 beds.METHODSMRSA-colonized neonates were identified from NICU admissions occurring from January 2007 to December 2014, during which a targeted decolonization strategy was used for MRSA control. In 2 time-to-event analyses, MRSA-colonized neonates were observed from the date of the first MRSA-positive surveillance screen until (1) the first occurrence of novel gram-positive cocci in sterile culture or discharge or (2) the first occurrence of novel gram-negative bacilli in sterile culture or discharge. Mupirocin exposure was treated as time varying.RESULTSA total of 522 MRSA-colonized neonates were identified from 16,144 neonates admitted to site NICUs. Of the MRSA-colonized neonates, 384 (74%) received mupirocin. Average time from positive culture to mupirocin treatment was 3.5 days (standard deviation, 7.2 days). The adjusted hazard of gram-positive cocci infection was 64% lower among mupirocin-exposed versus mupirocin-unexposed neonates (hazard ratio, 0.36; 95% confidence interval [CI], 0.17–0.76), whereas the adjusted hazard ratio of gram-negative bacilli infection comparing mupirocin-exposed and -unexposed neonates was 1.05 (95% CI, 0.42–2.62).CONCLUSIONSIn this multicentered cohort of MRSA-colonized neonates, mupirocin-based decolonization treatment appeared to decrease the risk of infection with select gram-positive organisms as intended, and the treatment was not significantly associated with risk of subsequent infections with organisms not covered by mupirocin’s spectrum of activity.Infect Control Hosp Epidemiol2017;38:930–936</jats:sec
The molecular genetic analysis of the expanding pachyonychia congenita case collection
BACKGROUND: Pachyonychia congenita (PC) is a rare autosomal dominant keratinizing disorder characterized by severe, painful, palmoplantar keratoderma and nail dystrophy, often accompanied by oral leucokeratosis, cysts and follicular keratosis. It is caused by mutations in one of five keratin genes: KRT6A, KRT6B, KRT6C, KRT16 or KRT17. OBJECTIVES: To identify mutations in 84 new families with a clinical diagnosis of PC, recruited by the International Pachyonychia Congenita Research Registry during the last few years. METHODS: Genomic DNA isolated from saliva or peripheral blood leucocytes was amplified using primers specific for the PC-associated keratin genes and polymerase chain reaction products were directly sequenced. RESULTS: Mutations were identified in 84 families in the PC-associated keratin genes, comprising 46 distinct keratin mutations. Fourteen were previously unreported mutations, bringing the total number of different keratin mutations associated with PC to 105. CONCLUSIONS: By identifying mutations in KRT6A, KRT6B, KRT6C, KRT16 or KRT17, this study has confirmed, at the molecular level, the clinical diagnosis of PC in these families
The kunitz domain protein BLI-5 plays a functionally conserved role in cuticle formation in a diverse range of nematodes
The cuticle of parasitic nematodes performs many critical functions and is essential for proper development and for protection from the host immune response. The biosynthesis, assembly, modification and turnover of this exoskeleton have been most extensively studied in the free-living nematode, Caenorhabditis elegans, where it represents a complex multi-step process involving a whole suite of enzymes. The biosynthesis of the cuticle has an additional level of complexity, as many of the enzymes also require additional proteins to aid their activation and selective inhibition. Blister-5 (BLI-5) represents a protein with a kunitz-type serine protease interacting domain and is involved in cuticle collagen biosynthesis in C. elegans, through its interaction with subtilisin-like processing enzymes (such as BLI-4). Mutation of the bli-5 gene causes blistering of the collagenous adult cuticle. Homologues of BLI-5 have been identified in several parasitic species that span different nematode clades. In this study, we molecularly and biochemically characterize BLI-5 homologues from the clade V nematodes C. elegans and Haemonchus contortus and from the clade III filarial nematode Brugia malayi. The nematode BLI-5 orthologues possess a shared domain structure and perform similar in vitro and in vivo functions, performing important proteolytic enzyme functions. The results demonstrate that the bli-5 genes from these diverse parasitic nematodes are able to complement a C. elegansbli-5 mutant and thereby support the use of the C. elegans model system to examine gene function in the experimentally less-amenable parasitic species
Biosynthesis and enzymology of the Caenorhabditis elegans cuticle: identification and characterization of a novel serine protease inhibitor.
The nematode Caenorhabditis elegans represents an excellent model in which to examine nematode gene expression and function. A completed genome, straightforward transgenesis, available mutants and practical genome-wide RNAi approaches provide an invaluable toolkit in the characterization of
nematode genes. We have performed a targeted RNAi screen in an attempt to identify components of the cuticle collagen biosynthetic pathway. Collagen biosynthesis and cuticle assembly are multi-step processes that involve numerous key enzymes involved in post-translational modification, trimer folding, procollagen processing and subsequent cross-linking stages. Many of these steps, the modifications and the enzymes are unique to nematodes and may represent attractive targets for the control of parasitic nematodes. A novel serine protease inhibitor was uncovered during our targeted screen, which is involved in collagen maturation,
proper cuticle assembly and the moulting process. We have confirmed a link between this inhibitor and the previously uncharacterized bli-5 locus in C. elegans. The mutant phenotype, spatial expression pattern and the over-expression phenotype of the BLI-5 protease inhibitor and their relevance to collagen biosynthesis are discussed
Tissue Engineering of Lips and Muco-Cutaneous Junctions: In Vitro Development of Tissue Engineered Constructs of Oral Mucosa and Skin for Lip Reconstruction
We report for the first time the fabrication of a three-dimensional tissue structure containing, in a continuous layer, the morphological features of a lip: epidermal skin, vermillion, and oral mucosa. This tissue engineered muco-cutaneous (M/C) equivalent was manufactured using human oral and skin keratinocytes grown on an acellular, nonimmunogenic dermal equivalent (AlloDerm-) to produce a tissue equivalent with similar anatomic and handling properties as native human lips. Confirmation of the structural composition of the construct was performed using routine histology and immunohistochemistry by identification of epithelial markers that are differentially expressed in separate anatomic areas of the lips. These full-thickness human lip skin equivalents can be used in surgical lip reconstruction in individuals suffering from lip loss from cancer, congenital deformations, and injuries after accidents. We propose this technique can be used as a general basis for tissue engineering of M/C junctions in other parts of the body, such as anus and vagina.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90465/1/ten-2Etec-2E2011-2E0406.pd
CHROMATOGRAPHY OF BLOOD-CLOTTING FACTORS AND SERUM PROTEINS ON COLUMNS OF DIATOMACEOUS EARTH
1. In batch adsorptions with prothrombin solutions, hyflo was the weakest adsorbent, standard super-cel intermediate, and filter-cel strongest. Of these three grades of diatomaceous earth, hyflo has the smallest surface area per gram and filter-cel the largest. In parallel breakthrough experiments, a column of standard super-cel had a capacity almost six times that of a hyflo column. 2. After partial removal of impurities by diatomaceous earth, prothrombin preparations contained less thrombokinase, were more stable, and displayed less tendency to form thrombin "spontaneously." Thrombokinase (or its precursor) was removed from a preparation of prothrombin by passage through a filter cake of standard super-cel. The specific activity of the prothrombin was increased; and 62 per cent of the activity was recovered. 3. Prothrombin was adsorbed from an ammonium sulfate solution at pH 5.26 by columns of hyflo or standard super-cel. When eluted by phosphate solutions, the protein moved down the columns more readily at higher pH and higher concentration of phosphate salts, within the pH range 5.0 to 6.6, and within the phosphate range 0.1 to 1.0 M. 4. Thrombin was adsorbed on a column of standard super-cel at pH 5.11. As successive eluents passed through the column, the thrombin emerged between two bands of impurities. The specific activity of the thrombin was raised; and 83 per cent of the activity was recovered. 5. With a column of standard super-cel, and with a series of eluents within the pH range 5.1 to 6.3, total serum proteins were separated into four major bands. About 94 per cent of the protein was recovered
- …
