71 research outputs found

    Allosteric modulation of hormone release from thyroxine and corticosteroid-binding globulins.

    Get PDF
    The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG. We show here that the direct interaction between residue Thr(342) of the reactive loop and Tyr(241) of the hormone binding site contributes to thyroxine binding and release following reactive loop insertion. However, a much larger effect occurs allosterically due to stretching of the connecting loop to the top of the D helix (hD), as confirmed in TBG with shortening of the loop by three residues, making it insensitive to the S-to-R transition. The transmission of the changes in the hD loop to the binding pocket is seen to involve coherent movements in the s2/3B loop linked to the hD loop by Lys(243), which is, in turn, linked to the s4/5B loop, flanking the thyroxine-binding site, by Arg(378). Overall, the coordinated movements of the reactive loop, hD, and the hormone binding site allow the allosteric regulation of hormone release, as with the modulation demonstrated here in response to changes in temperature

    Увічнення пам’яті героїв Східної (Кримської) війни (1853 – 1856 рр.) у кінофотодокументах

    Get PDF
    Дана стаття розглядає увічнення пам’яті героїв Східної (Кримської) війни 1853–1856 рр. та святкування її 100-річчя в кінофотодокументах.This article is dedicated to perpetuation of the memory of the Eastern (Crimean) War heroes. It also shows the celebration of 100-year anniversary by means of the cine- and photo documents

    A Structural Study of the Cytoplasmic Chaperone Effect of 14-3-3 Proteins on Ataxin-1

    Get PDF
    Expansion of the polyglutamine tract in the N terminus of Ataxin-1 is the main cause of the neurodegenerative disease, spinocerebellar ataxia type 1 (SCA1). However, the C-terminal part of the protein - including its AXH domain and a phosphorylation on residue serine 776 - also plays a crucial role in disease development. This phosphorylation event is known to be crucial for the interaction of Ataxin-1 with the 14-3-3 adaptor proteins and has been shown to indirectly contribute to Ataxin-1 stability. Here we show that 14-3-3 also has a direct anti-aggregation or chaperone effect on Ataxin-1. Furthermore, we provide structural and biophysical information revealing how phosphorylated S776 in the intrinsically disordered C terminus of Ataxin-1 mediates the cytoplasmic interaction with 14-3-3 proteins. Based on these findings, we propose that 14-3-3 exerts the observed chaperone effect by interfering with Ataxin-1 dimerization through its AXH domain, reducing further self-association. The chaperone effect is particularly important in the context of SCA1, as it was previously shown that a soluble form of mutant Ataxin-1 is the major driver of pathology

    The renaissance of Ras

    Get PDF
    Increased signalling by the small G protein Ras is found in many human cancers and is often caused by direct mutation of this protein. Hence, small-molecule attenuation of pathological Ras activity is of utmost interest in oncology. However, despite nearly three decades of intense drug discovery efforts, no clinically viable option for Ras inhibition has been developed. Very recently, reports of a number of new approaches of addressing Ras activity have led to the revival of this molecular target with the prospect of finally fulfilling the therapy promises associated with this important protein

    A study on the effect of synthetic α-to-β3-amino acid mutations on the binding of phosphopeptides to 14-3-3 proteins

    No full text
    Here we describe the synthesis of a series of α,β-phosphopeptides, based on the phosphoepitope site on YAP1 (yes-associated protein 1), and the biochemical, biophysical and structural characterization of their binding to 14-3-3 proteins. The impact of systematic mono- and di-substitution of α → β3 amino acid residues around the phosphoserine residue are discussed. Our results confirm the important role played by the +2 proline residue in the thermodynamics and structure of the phosphoepitope/14-3-3 interaction

    A study on the effect of synthetic α-to-β 3 -amino acid mutations on the binding of phosphopeptides to 14-3-3 proteins

    Get PDF
    Here we describe the synthesis of a series of a,b-phosphopeptides,based on the phosphoepitope site on YAP1 (yes-associated protein 1),and the biochemical, biophysical and structural characterizationof their binding to 14-3-3 proteins. The impact of systematic monoanddi-substitution of a - b3 amino acid residues around thephosphoserine residue are discussed. Our results confirm the importantrole played by the +2 proline residue in the thermodynamics andstructure of the phosphoepitope/14-3-3 interaction

    Dual-input regulation and positional control in hybrid oligonucleotide/discotic supramolecular wires

    No full text
    \u3cp\u3eThe combination of oligonucleotides and synthetic supramolecular systems allows for novel and long-needed modes of regulation of the self-assembly of both molecular elements. Discotic molecules were conjugated with short oligonucleotides and their assembly into responsive supramolecular wires studied. The self-assembly of the discotic molecules provides additional stability for DNA-duplex formation owing to a cooperative effect. The appended oligonucleotides allow for positional control of the discotic elements within the supramolecular wire. The programmed assembly of these hybrid architectures can be modulated through the DNA, for example, by changing the number of base pairs or salt concentration, and through the discotic platform by the addition of discotic elements without oligonucleotide handles. These hybrid supramolecular-DNA structures allow for advanced levels of control over 1D dynamic platforms with responsive regulatory elements at the interface with biological systems.\u3c/p\u3

    Mutually exclusive cellular uptake of combinatorial supramolecular copolymers

    No full text
    \u3cp\u3eThe cellular uptake of self-assembled biological and synthetic matter results from their multicomponent properties. However, the interplay of the building block composition of self-assembled materials and uptake mechanisms urgently requires addressing. It is shown here that supramolecular polymers that self-assemble in aqueous media, are a modular and controllable platform to modulate cellular delivery by the introduction of small ligands or cationic moieties, with concomitantly different cellular uptake kinetics and valence dependence. A library of supramolecular copolymers revealed stringent mutually exclusive uptake behavior in which either of the uptake pathways dominated, with sharp compositional transition. Supramolecular biomaterial engineering thus provides for adaptive platforms with great potential for efficient tuning of multivalent and multicomponent systems interfacing with biological matter.\u3c/p\u3

    Supramolecular chemistry targeting proteins

    Get PDF
    \u3cp\u3eThe specific recognition of protein surface elements is a fundamental challenge in the life sciences. New developments in this field will form the basis of advanced therapeutic approaches and lead to applications such as sensors, affinity tags, immobilization techniques, and protein-based materials. Synthetic supramolecular molecules and materials are creating new opportunities for protein recognition that are orthogonal to classical small molecule and protein-based approaches. As outlined here, their unique molecular features enable the recognition of amino acids, peptides, and even whole protein surfaces, which can be applied to the modulation and assembly of proteins. We believe that structural insights into these processes are of great value for the further development of this field and have therefore focused this Perspective on contributions that provide such structural data.\u3c/p\u3

    Modulators of protein-protein interactions

    No full text
    No abstrac
    corecore