4,485 research outputs found

    Statics and Dynamics of Skyrmions Interacting with Pinning: A Review

    Full text link
    Magnetic skyrmions are topologically stable nanoscale particle-like objects that were discovered in 2009. Since that time, intense research interest has led to the identification of numerous compounds that support skyrmions over a range of conditions spanning cryogenic to room temperatures. Skyrmions can be set into motion under various types of driving, and the combination of their size, stability, and dynamics makes them ideal candidates for numerous applications. Skyrmions represent a new class of system in which the energy scales of the skyrmion-skyrmion interactions, sample disorder, temperature, and drive can compete. A growing body of work indicates that the static and dynamic states of skyrmions can be influenced strongly by pinning or disorder in the sample; thus, an understanding of such effects is essential for the eventual use of skyrmions in applications. In this article we review the current state of knowledge regarding individual skyrmions and skyrmion assemblies interacting with quenched disorder or pinning. We outline the microscopic mechanisms for skyrmion pinning, including the repulsive and attractive interactions that can arise from impurities, grain boundaries, or nanostructures. This is followed by descriptions of depinning phenomena, sliding states over disorder, the effect of pinning on the skyrmion Hall angle, the competition between thermal and pinning effects, the control of skyrmion motion using ordered potential landscapes such as one- or two-dimensional periodic asymmetric substrates, the creation of skyrmion diodes, and skyrmion ratchet effects. We highlight the distinctions arising from internal modes and the strong gyroscopic or Magnus forces that cause the dynamical states of skyrmions to differ from those of other systems with pinning. We also discuss future directions and open questions related to the pinning and dynamics in skyrmion systems.Comment: 66 pages, 71 figure

    Harmonic generation by atoms in circularly polarized two-color laser fields with coplanar polarizations and commensurate frequencies

    Get PDF
    The generation of harmonics by atoms or ions in a two-color, coplanar field configuration with commensurate frequencies is investigated through both, an analytical calculation based on the Lewenstein model and the numerical ab initio solution of the time-dependent Schroedinger equation of a two-dimensional model ion. Through the analytical model, selection rules for the harmonic orders in this field configuration, a generalized cut-off for the harmonic spectra, and an integral expression for the harmonic dipole strength is provided. The numerical results are employed to test the predictions of the analytical model. The scaling of the cut-off as a function of both, one of the laser intensities and frequency ratio η\eta, as well as entire spectra for different η\eta and laser intensities are presented and analyzed. The theoretical cut-off is found to be an upper limit for the numerical results. Other discrepancies between analytical model and numerical results are clarified by taking into account the probabilities of the absorption processes involved.Comment: 8 figure

    Harmonic generation in ring-shaped molecules

    Get PDF
    We study numerically the interaction between an intense circularly polarized laser field and an electron moving in a potential which has a discrete cylindrical symmetry with respect to the laser pulse propagation direction. This setup serves as a simple model, e.g., for benzene and other aromatic compounds. From general symmetry considerations, within a Floquet approach, selection rules for the harmonic generation [O. Alon Phys. Rev. Lett. 80 3743 (1998)] have been derived recently. Instead, the results we present in this paper have been obtained solving the time-dependent Schroedinger equation ab initio for realistic pulse shapes. We find a rich structure which is not always dominated by the laser harmonics.Comment: 15 pages including 7 figure

    Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming

    Get PDF
    Exocytosis of secretory or synaptic vesicles is executed by a mechanism including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. Munc18-1 is a part of this fusion machinery, but its role is controversial because it is indispensable for fusion but also inhibits the assembly of purified SNAREs in vitro. This inhibition reflects the binding of Munc18-1 to a closed conformation of the target-SNARE syntaxin1. The controversy would be solved if binding to closed syntaxin1 were shown to be stimulatory for vesicle fusion and/or additional essential interactions were identified between Munc18-1 and the fusion machinery. Here, we provide evidence for both notions by dissecting sequential steps of the exocytotic cascade while expressing Munc18 variants in the Munc18-1 null background. In Munc18-1 null chromaffin cells, vesicle docking is abolished and syntaxin levels are reduced. A mutation that diminished Munc18 binding to syntaxin1 in vitro attenuated the vesicle-docking step but rescued vesicle priming in excess of docking. Conversely, expressing the Munc18-2 isoform, which also displays binding to closed syntaxin1, rescued vesicle docking identical with Munc18-1 but impaired more downstream vesicle priming steps. All Munc18 variants restored syntaxin1 levels at least to wild-type levels, showing that the docking phenotype is not caused by syntaxin1 reduction. None of the Munc18 variants affected vesicle fusion kinetics or fusion pore duration. In conclusion, binding of Munc18-1 to closed syntaxin1 stimulates vesicle docking and a distinct interaction mode regulates the consecutive priming step. Copyright © 2007 Society for Neuroscience

    ARTreat Project: Three-Dimensional Numerical Simulation of Plaque Formation and Development in the Arteries

    Get PDF
    Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous elements in arteries. It is characterized by dysfunction of endothelium and vasculitis, and accumulation of lipid, cholesterol, and cell elements inside blood vessel wall. In this study, a continuum-based approach for plaque formation and development in 3-D is presented. The blood flow is simulated by the 3-D Navier-Stokes equations, together with the continuity equation while low-density lipoprotein (LDL) transport in lumen of the vessel is coupled with Kedem-Katchalsky equations. The inflammatory process was solved using three additional reaction-diffusion partial differential equations. Transport of labeled LDL was fitted with our experiment on the rabbit animal model. Matching with histological data for LDL localization was achieved. Also, 3-D model of the straight artery with initial mild constriction of 30% plaque for formation and development is presented

    Modification of the rho meson detected by low-mass electron-positron pairs in central Pb-Au collisions at 158 A GeV/c

    Get PDF
    We present a measurement of e+ee^+e^- pair production in central Pb-Au collisions at 158AA GeV/cc. As reported earlier, a significant excess of the e+ee^+e^- pair yield over the expectation from hadron decays is observed. The improved mass resolution of the present data set, recorded with the upgraded CERES experiment at the CERN-SPS, allows for a comparison of the data with different theoretical approaches. The data clearly favor a substantial in-medium broadening of the ρ\rho spectral function over a density-dependent shift of the ρ\rho pole mass. The in-medium broadening model implies that baryon induced interactions are the key mechanism to in-medium modifications of the ρ\rho-meson in the hot fireball at SPS energy.Comment: Revised versio

    Azimuthal dependence of pion source radii in Pb+Au collisions at 158 A GeV

    Get PDF
    We present results of a two-pion correlation analysis performed with the Au+Pb collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the AGS and at RHIC.Comment: 5 pages, 2 figure

    Semi-Hard Scattering Unraveled from Collective Dynamics by Two-Pion Azimuthal Correlations in 158 A GeV/c Pb + Au Collisions

    Full text link
    Elliptic flow and two-particle azimuthal correlations of charged hadrons and high-pTp_T pions (pT>p_T> 1 GeV/cc) have been measured close to mid-rapidity in 158A GeV/cc Pb+Au collisions by the CERES experiment. Elliptic flow (v2v_2) rises linearly with pTp_T to a value of about 10% at 2 GeV/cc. Beyond pTp_T\approx 1.5 GeV/cc, the slope decreases considerably, possibly indicating a saturation of v2v_2 at high pTp_T. Two-pion azimuthal anisotropies for pT>p_T> 1.2 GeV/cc exceed the elliptic flow values by about 60% in mid-central collisions. These non-flow contributions are attributed to near-side and back-to-back jet-like correlations, the latter exhibiting centrality dependent broadening.Comment: Submitted to Phys. Rev. Letters, 4 pages, 5 figure

    A comparative study of ultrasonic direct contact, immersion, and layer resonance methods for assessment of enamel thickness in teeth

    Get PDF
    Wear of dental enamel is a growing problem, but is clinically difficult to diagnose and monitor. An accurate and easy-to-use non-destructive method for the measurement of enamel thickness would be useful for early diagnosis of enamel loss and for monitoring progression. Ultrasound has been identified by several researchers as a potential tool suitable for enamel thickness measurement. However, in vitro studies have shown that while the method is feasible, it suffers from wide variability. The methods proposed to date rely on the measurement of the time of flight of an ultrasonic pulse through the enamel layer. This requires the operator to locate the enamel-dentine junction. In this work, three methods are evaluated to try to reduce this variability and to investigate some practicalities of the approach. Time-of-flight methods using both contact and immersion transducers were used. Immersion transducers gave the most accurate results, within 10-15 per cent of values deduced from tooth sections, but would be harder to arrange for in vivo measurements. Preliminary studies have also shown that it is possible to achieve a resonance in the enamel layer and to measure thickness that way. While this approach needs further experimental refinement, it has the potential to be used for much thinner enamel layer thicknesses
    corecore