513 research outputs found

    Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression

    Full text link
    Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al0.5_{0.5}Ga0.5_{0.5}As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time τ01\tau_{01} of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.

    Test-beam and laboratory characterisation of the TORCH prototype detector

    Get PDF
    The TORCH time-of-flight (TOF) detector is being developed to provide particle identification up to a momentum of 10 GeV/c over a flight distance of 10 m. It has a DIRC-like construction with View the MathML source10mm thick synthetic amorphous fused-silica plates as a Cherenkov radiator. Photons propagate by total internal reflection to the plate periphery where they are focused onto an array of customised position-sensitive micro-channel plate (MCP) detectors. The goal is to achieve a 15 ps time-of-flight resolution per incident particle by combining arrival times from multiple photons. The MCPs have pixels of effective size 0.4 mm×6.6 mm2 in the vertical and horizontal directions, respectively, by incorporating a novel charge-sharing technique to improve the spatial resolution to better than the pitch of the readout anodes. Prototype photon detectors and readout electronics have been tested and calibrated in the laboratory. Preliminary results from testbeam measurements of a prototype TORCH detector are also presented

    Prevalence and Socio-behavioral Influence of Early Childhood Caries, ECC, and Feeding Habits among 6-36 Months Old Children in Uganda and Tanzania.

    Get PDF
    Early childhood caries (ECC) is a serious problem that has remained unexplored in sub-Saharan Africa. This study aimed to identify possible socio-behavioral correlates of ECC focusing 6-36 months old children and their caretakers.\ud Cross sectional studies were conducted in a high fluoride rural area, Manyara, Tanzania and a low fluoride urban area, Kampala, Uganda. Totals of 1221 and 816 child - caretaker pairs attending health care facilities for growth monitoring were recruited in Manyara and Kampala, respectively. All caretakers completed face to face interviews at the health care facility. Children underwent oral clinical examination whereby ECC and Enamel hypoplasia were recorded using the dmft (WHO 1997) and the DDE index (FDI 1992). The prevalence of ECC was 3.7% in Manyara and 17.6% in Kampala. According to multiple logistic regression analyses, received oral health information from health worker was the strongest determinant of ECC in Manyara, adjusted OR 0.3, 95% CI 0.09 - 0.93. In Kampala, visible plaque, high sugar intake and presence of enamel hypoplasia associated with ECC, adjusted ORs 2.8 (95% CI 1.61- 4.95), 3.0 (95% CI 1.39 - 6.34) and 2.3 (95% CI 1.36 - 3.95). Oral health education aimed at caretakers of 6-36 months, including health care workers' information regarding the detrimental consequences for oral health of frequent sugar consumption and poor oral hygiene is important for prevention of ECC in Tanzania and Uganda

    Disruption prediction at JET through deep convolutional neural networks using spatiotemporal information from plasma profiles

    Get PDF
    In view of the future high power nuclear fusion experiments, the early identification of disruptions is a mandatory requirement, and presently the main goal is moving from the disruption mitigation to disruption avoidance and control. In this work, a deep-convolutional neural network (CNN) is proposed to provide early detection of disruptive events at JET. The CNN ability to learn relevant features, avoiding hand-engineered feature extraction, has been exploited to extract the spatiotemporal information from 1D plasma profiles. The model is trained with regularly terminated discharges and automatically selected disruptive phase of disruptions, coming from the recent ITER-like-wall experiments. The prediction performance is evaluated using a set of discharges representative of different operating scenarios, and an in-depth analysis is made to evaluate the performance evolution with respect to the considered experimental conditions. Finally, as real-time triggers and termination schemes are being developed at JET, the proposed model has been tested on a set of recent experiments dedicated to plasma termination for disruption avoidance and mitigation. The CNN model demonstrates very high performance, and the exploitation of 1D plasma profiles as model input allows us to understand the underlying physical phenomena behind the predictor decision

    New H-mode regimes with small ELMs and high thermal confinement in the Joint European Torus

    Get PDF
    New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such regimes are achieved by means of optimized particle fueling conditions at high input power, current, and magnetic field, which lead to a self-organized state with a strong increase in rotation and ion temperature and a decrease in the edge density. An interplay between core and edge plasma regions leads to reduced turbulence levels and outward impurity convection. These results pave the way to an attractive alternative to the standard plasmas considered for fusion energy generation in a tokamak with a metallic wall environment such as the ones expected in ITER.& nbsp;Published under an exclusive license by AIP Publishing

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER
    corecore