95 research outputs found

    Reptation and contour-length fluctuations in melts of linear polymers

    Get PDF
    We present an analytical theory of stress relaxation in monodisperse linear polymer melts that contains contributions from both reptation and contour-length fluctuations, modeled as in our previous work on arm retraction in star polymers. Our approach resolves two long-standing problems with reptation theory: it predicts a zero-shear viscosity eta scaling as eta similar to N-3.4 over a broad range in chain length N before reaching an asymptotic N3 dependence, and a power law omega(-alpha) in the dynamic loss modulus G "(omega) with 0 < alpha < 1/4 depending on chain length, in agreement with experiment

    Validity of the scaling functional approach for polymer interfaces as a variational theory

    Full text link
    We discuss the soundness of the scaling functional (SF) approach proposed by Aubouy Guiselin and Raphael (Macromolecules 29, 7261 (1996)) to describe polymeric interfaces. In particular, we demonstrate that this approach is a variational theory. We emphasis the role of SF theory as an important link between ground-state theories suitable to describe adsorbed layers, and "classical" theories for polymer brushes.Comment: 8 pages, 1 figure, to be published in Phys. Rev.

    Depletion forces near a soft surface

    Full text link
    We investigate excluded-volume effects in a bidisperse colloidal suspension near a flexible interface. Inspired by a recent experiment by Dinsmore et al. (Phys. Rev, Lett. 80, 409 (1998)), we study the adsorption of a mesoscopic bead on the surface and show that depletion forces could in principle lead to particle encapsulation. We then consider the effect of surface fluctuations on the depletion potential itself and construct the density profile of a polymer solution near a soft interface. Surprisingly we find that the chains accumulate at the wall, whereas the density displays a deficit of particles at distances larger than the surface roughness. This non-monotonic behavior demonstrates that surface fluctuations can have major repercusions on the properties of a colloidal solution. On average, the additional contribution to the Gibbs adsorbance is negative. The amplitude of the depletion potential between a mesoscopic bead and the surface increases accordingly.Comment: 10 pages, 5 figure

    Faraday instability on viscous ferrofluids in a horizontal magnetic field: Oblique rolls of arbitrary orientation

    Full text link
    A linear stability analysis of the free surface of a horizontally unbounded ferrofluid layer of arbitrary depth subjected to vertical vibrations and a horizontal magnetic field is performed. A nonmonotonic dependence of the stability threshold on the magnetic field is found at high frequencies of the vibrations. The reasons of the decrease of the critical acceleration amplitude caused by a horizontal magnetic field are discussed. It is revealed that the magnetic field can be used to select the first unstable pattern of Faraday waves. In particular, a rhombic pattern as a superposition of two different oblique rolls can occur. A scaling law is presented which maps all data into one graph for the tested range of viscosities, frequencies, magnetic fields and layer thicknesses.Comment: 8 pages, 6 figures, RevTex

    Scarred Patterns in Surface Waves

    Full text link
    Surface wave patterns are investigated experimentally in a system geometry that has become a paradigm of quantum chaos: the stadium billiard. Linear waves in bounded geometries for which classical ray trajectories are chaotic are known to give rise to scarred patterns. Here, we utilize parametrically forced surface waves (Faraday waves), which become progressively nonlinear beyond the wave instability threshold, to investigate the subtle interplay between boundaries and nonlinearity. Only a subset (three main types) of the computed linear modes of the stadium are observed in a systematic scan. These correspond to modes in which the wave amplitudes are strongly enhanced along paths corresponding to certain periodic ray orbits. Many other modes are found to be suppressed, in general agreement with a prediction by Agam and Altshuler based on boundary dissipation and the Lyapunov exponent of the associated orbit. Spatially asymmetric or disordered (but time-independent) patterns are also found even near onset. As the driving acceleration is increased, the time-independent scarred patterns persist, but in some cases transitions between modes are noted. The onset of spatiotemporal chaos at higher forcing amplitude often involves a nonperiodic oscillation between spatially ordered and disordered states. We characterize this phenomenon using the concept of pattern entropy. The rate of change of the patterns is found to be reduced as the state passes temporarily near the ordered configurations of lower entropy. We also report complex but highly symmetric (time-independent) patterns far above onset in the regime that is normally chaotic.Comment: 9 pages, 10 figures (low resolution gif files). Updated and added references and text. For high resolution images: http://physics.clarku.edu/~akudrolli/stadium.htm

    Network development in biological gels: role in lymphatic vessel development

    Get PDF
    In this paper, we present a model that explains the prepatterning of lymphatic vessel morphology in collagen gels. This model is derived using the theory of two phase rubber material due to Flory and coworkers and it consists of two coupled fourth order partial differential equations describing the evolution of the collagen volume fraction, and the evolution of the proton concentration in a collagen implant; as described in experiments of Boardman and Swartz (Circ. Res. 92, 801–808, 2003). Using linear stability analysis, we find that above a critical level of proton concentration, spatial patterns form due to small perturbations in the initially uniform steady state. Using a long wavelength reduction, we can reduce the two coupled partial differential equations to one fourth order equation that is very similar to the Cahn–Hilliard equation; however, it has more complex nonlinearities and degeneracies. We present the results of numerical simulations and discuss the biological implications of our model

    The response function of a sphere in a viscoelastic two-fluid medium

    Full text link
    In order to address basic questions of importance to microrheology, we study the dynamics of a rigid sphere embedded in a model viscoelastic medium consisting of an elastic network permeated by a viscous fluid. We calculate the complete response of a single bead in this medium to an external force and compare the result to the commonly-accepted, generalized Stokes-Einstein relation (GSER). We find that our response function is well approximated by the GSER only within a particular frequency range determined by the material parameters of both the bead and the network. We then discuss the relevance of this result to recent experiments. Finally we discuss the approximations made in our solution of the response function by comparing our results to the exact solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure

    Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

    Get PDF
    We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to \kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E2E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; in contrast, we predict "reverse" ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ

    Amplitude measurements of Faraday waves

    Full text link
    A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quantitative agreement up to supercritical drive amplitudes of 20%. The validity of an existing perturbation analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure

    Mechanical vibrations of pendant liquid droplets

    Get PDF
    A simple optical deflection technique was used to monitor the vibrations of microlitre pendant droplets of deuterium oxide, formamide, and 1,1,2,2-tetrabromoethane. Droplets of different volumes of each liquid were suspended from the end of a microlitre pipette and vibrated using a small puff of nitrogen gas. A laser was passed through the droplets and the scattered light was collected using a photodiode. Vibration of the droplets resulted in the motion of the scattered beam and time-dependent intensity variations were recorded using the photodiode. These time- dependent variations were Fourier transformed and the frequencies and widths of the mechanical droplet resonances were extracted. A simple model of vibrations in pendant/sessile drops was used to relate these parameters to the surface tension, density and viscosity of the liquid droplets. The surface tension values obtained from this method were found to be in good agreement with results obtained using the standard pendant drop technique. Damping of capillary waves on pendant drops was shown to be similar to that observed for deep liquid baths and the kinematic viscosities obtained were in agreement with literature values for all three liquids studied
    • …
    corecore