460 research outputs found
Two new rapid SNP-typing methods for classifying Mycobacterium tuberculosis complex into the main phylogenetic lineages
There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the 'Beijing' sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive
Why alternative teenagers self-harm: exploring the link between non-suicidal self-injury, attempted suicide and adolescent identity
Background:
The term ‘self-harm’ encompasses both attempted suicide and non-suicidal self-injury (NSSI). Specific adolescent subpopulations such as ethnic or sexual minorities, and more controversially, those who identify as ‘Alternative’ (Goth, Emo) have been proposed as being more likely to self-harm, while other groups such as ‘Jocks’ are linked with protective coping behaviours (for example exercise). NSSI has autonomic (it reduces negative emotions) and social (it communicates distress or facilitates group ‘bonding’) functions. This study explores the links between such aspects of self-harm, primarily NSSI, and youth subculture.<p></p>
Methods:
An anonymous survey was carried out of 452 15 year old German school students. Measures included: identification with different youth cultures, i.e. Alternative (Goth, Emo, Punk), Nerd (academic) or Jock (athletic); social background, e.g. socioeconomic status; and experience of victimisation. Self-harm (suicide and NSSI) was assessed using Self-harm Behavior Questionnaire and the Functional Assessment of Self-Mutilation (FASM).<p></p>
Results:
An “Alternative” identity was directly (r ≈ 0.3) and a “Jock” identity inversely (r ≈ -0.1) correlated with self-harm. “Alternative” teenagers self-injured more frequently (NSSI 45.5% vs. 18.8%), repeatedly self-injured, and were 4–8 times more likely to attempt suicide (even after adjusting for social background) than their non-Alternative peers. They were also more likely to self-injure for autonomic, communicative and social reasons than other adolescents.<p></p>
Conclusions:
About half of ‘Alternative’ adolescents’ self-injure, primarily to regulate emotions and communicate distress. However, a minority self-injure to reinforce their group identity, i.e. ‘To feel more a part of a group’
Migraine aura: retracting particle-like waves in weakly susceptible cortex
Cortical spreading depression (SD) has been suggested to underlie migraine aura. Despite a precise match in speed, the spatio-temporal patterns of SD and aura symptoms on the cortical surface ordinarily differ in aspects of size and shape. We show that this mismatch is reconciled by utilizing that both pattern types bifurcate from an instability point of generic reaction-diffusion models. To classify these spatio-temporal pattern we suggest a susceptibility scale having the value [sigma]=1 at the instability point. We predict that human cortex is only weakly susceptible to SD ([sigma]<1), and support this prediction by directly matching visual aura symptoms with anatomical landmarks using fMRI retinotopic mapping. We discuss the increased dynamical repertoire of cortical tissue close to [sigma]=1, in particular, the resulting implications on migraine pharmacology that is hitherto tested in the regime ([sigma]>>1), and potentially silent aura occurring below a second bifurcation point at [sigma]=0 on the susceptible scale
Left, right, left, right, eyes to the front! Müller-Lyer bias in grasping is not a function of hand used, hand preferred or visual hemifield, but foveation does matter
We investigated whether the control of movement of the left hand is more likely to involve the use of allocentric information than movements performed with the right hand. Previous studies (Gonzalez et al. in J Neurophys 95:3496–3501, 2006; De Grave et al. in Exp Br Res 193:421–427, 2009) have reported contradictory findings in this respect. In the present study, right-handed participants (N = 12) and left-handed participants (N = 12) made right- and left-handed grasps to foveated objects and peripheral, non-foveated objects that were located in the right or left visual hemifield and embedded within a Müller-Lyer illusion. They were also asked to judge the size of the object by matching their hand aperture to its length. Hand apertures did not show significant differences in illusory bias as a function of hand used, handedness or visual hemifield. However, the illusory effect was significantly larger for perception than for action, and for the non-foveated compared to foveated objects. No significant illusory biases were found for reach movement times. These findings are consistent with the two-visual system model that holds that the use of allocentric information is more prominent in perception than in movement control. We propose that the increased involvement of allocentric information in movements toward peripheral, non-foveated objects may be a consequence of more awkward, less automatized grasps of nonfoveated than foveated objects. The current study does not support the conjecture that the control of left-handed and right-handed grasps is predicated on different sources of information
A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching
The “hierarchical model” proposed earlier [Larson in Macromolecules 34:4556–4571, 2001] is herein modified by inclusion of early time fluctuations and other refinements drawn from the theories of Milner and McLeish for more quantitative prediction. The hierarchical model predictions are then compared with experimental linear viscoelastic data of well-defined long chain branched 1,4-polybutadienes and 1,4-polyisoprenes using a single set of parameter values for each polymer, which are obtained from experimental data for monodisperse linear and star polymers. For a wide range of monodisperse branched polymer melts, the predictions of the hierarchical model for monodisperse melts are very similar to those of the Milner–McLeish theories, and agree well with experimental data for many, but not all, of the branched polymer samples. Since the modified hierarchical model accounts for arbitrary polydispersity in molecular weight and branching distributions, which is not accounted for in the Milner–McLeish theories, the hierarchical algorithm is a promising one for predicting the relaxation of general mixtures of branched polymers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47217/1/397_2004_Article_415.pd
No evidence for cardiac dysfunction in Kif6 mutant mice.
A KIF6 variant in man has been reported to be associated with adverse cardiovascular outcomes after myocardial infarction.
No clear biological or physiological data exist for Kif6. We sought to investigate the impact of a deleterious KIF6 mutation on
cardiac function in mice. Kif6 mutant mice were generated and verified. Cardiac function was assessed by serial
echocardiography at baseline, after ageing and after exercise. Lipid levels were also measured. No discernable adverse lipid
or cardiac phenotype was detected in Kif6 mutant mice. These data suggest that dysfunction of Kif6 is linked to other more
complex biological/biochemical parameters or is unlikely to be of material consequence in cardiac function
A Judd illusion in far-aiming: evidence of a contribution to action by vision for perception
The present study addresses the role of vision for perception in determining the location of a target in far-aiming. Participants (N = 12) slid a disk toward a distant target embedded in illusory Judd figures. Additionally, in a perception task, participants indicated when a moving pointer reached the midpoint of the Judd figures. The number of hits, the number of misses to the left and to the right of the target, the sliding error (in mm) and perceptual judgment error (in mm) served as dependent variables. Results showed an illusory bias in sliding, the magnitude of which was comparable to the bias in the perception of target location. The determination of target location in far-aiming is thus based on relative metrics. We argue that vision for perception sets the boundary constraints for action and that within these constraints vision for action autonomously controls movement execution, but alternative accounts are discussed as well
Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi
Endemic Burkitt lymphoma (eBL) has been linked to Plasmodium falciparum (Pf) malaria infection, but the contribution of infection with multiple Pf genotypes is uncertain. We studied 303 eBL (cases) and 274 non eBL-related cancers (controls) in Malawi using a sensitive and specific molecular-barcode array of 24 independently segregating Pf single nucleotide polymorphisms. Cases had a higher Pf malaria prevalence than controls (64.7% versus 45.3%; odds ratio [OR] 2.1, 95% confidence interval (CI): 1.5 to 3.1). Cases and controls were similar in terms of Pf density (4.9 versus 4.5 log copies, p = 0.28) and having ≥3 non-clonal calls (OR 2.7, 95% CI: 0.7-9.9, P = 0.14). However, cases were more likely to have a higher Pf genetic diversity score (153.9 versus 133.1, p = 0.036), which measures a combination of clonal and non-clonal calls, than controls. Further work is needed to evaluate the possible role of Pf genetic diversity in the pathogenesis of endemic BL
In Vivo Dynamics of the Musculoskeletal System Cannot Be Adequately Described Using a Stiffness-Damping-Inertia Model
Background: Visco-elastic properties of the (neuro-)musculoskeletal system play a fundamental role in the control of posture and movement. Often, these properties are described and identified using stiffness-damping-inertia (KBI) models. In such an approach, perturbations are applied to the (neuro-)musculoskeletal system and subsequently KBI-model parameters are optimized to obtain a best fit between simulated and experimentally observed responses. Problems with this approach may arise because a KBI-model neglects critical aspects of the real musculoskeletal system. Methodology/Principal Findings: The purpose of this study was to analyze the relation between the musculoskeletal properties and the stiffness and damping estimated using a KBI-model, to analyze how this relation is affected by the nature of the perturbation and to assess the sensitivity of the estimated stiffness and damping to measurement errors. Our analyses show that the estimated stiffness and damping using KBI-models do not resemble any of the dynamical parameters of the underlying system, not even when the responses are very accurately fitted by the KBI-model. Furthermore, the stiffness and damping depend non-linearly on all the dynamical parameters of the underlying system, influenced by the nature of the perturbation and the time interval over which the KBI-model is optimized. Moreover, our analyses predict a very high sensitivity of estimated parameters to measurement errors. Conclusions/Significance: The results of this study suggest that the usage of stiffness-damping-inertia models t
- …