93 research outputs found
A normative study of students selected at random on the H.M.H. plus and minus binocular rock test
A normative study of students selected at random on the H.M.H. plus and minus binocular rock tes
Peri- and postnatal effects of prenatal adenoviral VEGF gene therapy in growth-restricted sheep
Supported by Wellcome Trust project grant 088208 to A.L.D., J.M.W., D.M.P., I.C.Z., and J.F.M. Wellbeing of Women research training fellowship 318 to D.J.C., Scottish Government work package 4.2 to J.M.W., J.S.M., and R.P.A., as well as funding from the National Institute for Health Research University College London Hospitals Biomedical Research Centre A.L.D. and D.M.P., the British Heart Foundation to I.C.Z., and Ark Therapeutics Oy, Kuopio, Finland, which supplied adenovirus vectors free of charge.Peer reviewedPublisher PD
The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations?
We present extensive u'g'r'i'BVRIYJHKs photometry and optical spectroscopy of
SN 2005hk. These data reveal that SN 2005hk was nearly identical in its
observed properties to SN 2002cx, which has been called ``the most peculiar
known type Ia supernova.'' Both supernovae exhibited high ionization SN
1991T-like pre-maximum spectra, yet low peak luminosities like SN 1991bg. The
spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities
that were roughly half those of typical type Ia supernovae. The R and I light
curves of both supernovae were also peculiar in not displaying the secondary
maximum observed for normal type Ia supernovae. Our YJH photometry of SN 2005hk
reveals the same peculiarity in the near-infrared. By combining our optical and
near-infrared photometry of SN 2005hk with published ultraviolet light curves
obtained with the Swift satellite, we are able to construct a bolometric light
curve from ~10 days before to ~60 days after B maximum. The shape and unusually
low peak luminosity of this light curve, plus the low expansion velocities and
absence of a secondary maximum at red and near-infrared wavelengths, are all in
reasonable agreement with model calculations of a 3D deflagration which
produces ~0.25 M_sun of 56Ni.Comment: Accepted by PASP, to appear in April 2007 issue, 63 pages, 16
figures, 11 table
Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.
BackgroundAlthough studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth
Magnetic fields in cosmic particle acceleration sources
We review here some magnetic phenomena in astrophysical particle accelerators
associated with collisionless shocks in supernova remnants, radio galaxies and
clusters of galaxies. A specific feature is that the accelerated particles can
play an important role in magnetic field evolution in the objects. We discuss a
number of CR-driven, magnetic field amplification processes that are likely to
operate when diffusive shock acceleration (DSA) becomes efficient and
nonlinear. The turbulent magnetic fields produced by these processes determine
the maximum energies of accelerated particles and result in specific features
in the observed photon radiation of the sources. Equally important, magnetic
field amplification by the CR currents and pressure anisotropies may affect the
shocked gas temperatures and compression, both in the shock precursor and in
the downstream flow, if the shock is an efficient CR accelerator. Strong
fluctuations of the magnetic field on scales above the radiation formation
length in the shock vicinity result in intermittent structures observable in
synchrotron emission images. Resonant and non-resonant CR streaming
instabilities in the shock precursor can generate mesoscale magnetic fields
with scale-sizes comparable to supernova remnants and even superbubbles. This
opens the possibility that magnetic fields in the earliest galaxies were
produced by the first generation Population III supernova remnants and by
clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review
Framing the Real: Lefèbvre and NeoRealist Cinematic Space as Practice
In 1945 Roberto Rossellini's Neo-realist Rome, Open City set in motion an approach to cinema and its representation of real life – and by extension real spaces – that was to have international significance in film theory and practice. However, the re-use of the real spaces of the city, and elsewhere, as film sets in Neo-realist film offered (and offers) more than an influential aesthetic and set of cinematic theories. Through Neo-realism, it can be argued that we gain access to a cinematic relational and multidimensional space that is not made from built sets, but by filming the built environment. On the one hand, this space allows us to "notice" the contradictions around us in our cities and, by extension, the societies that have produced those cities, while on the other, allows us to see the spatial practices operative in the production and maintenance of those contradictions. In setting out a template for understanding the spatial practices of Neo-realism through the work of Henri Lefèbvre, this paper opens its films, and those produced today in its wake, to a spatio-political reading of contemporary relevance. We will suggest that the rupturing of divisions between real spaces and the spaces of film locations, as well the blurring of the difference between real life and performed actions for the camera that underlies much of the central importance of Neo-realism, echoes the arguments of Lefèbvre with regard the social production of space. In doing so, we will suggest that film potentially had, and still has, a vital role to play in a critique of contemporary capitalist spatial practices
The Far Ultraviolet Spectroscopic Explorer Survey of OVI Absorption in the Disk of the Milky Way
To probe the distribution and physical characteristics of interstellar gas at
temperatures T ~ 3e5 K in the disk of the Milky Way, we have used the Far
Ultraviolet Spectroscopic Explorer (FUSE) to observe absorption lines of OVI
toward 148 early-type stars situated at distances 1 kpc. After subtracting off
a mild excess of OVI arising from the Local Bubble, combining our new results
with earlier surveys of OVI, and eliminating stars that show conspicuous
localized X-ray emission, we find an average OVI mid-plane density n_0 = 1.3e-8
cm^-3. The density decreases away from the plane of the Galaxy in a way that is
consistent with an exponential scale height of 3.2 kpc at negative latitudes or
4.6 kpc at positive latitudes. Average volume densities of OVI along different
sight lines exhibit a dispersion of about 0.26 dex, irrespective of the
distances to the target stars. This indicates that OVI does not arise in
randomly situated clouds of a fixed size and density, but instead is
distributed in regions that have a very broad range of column densities, with
the more strongly absorbing clouds having a lower space density. Line widths
and centroid velocities are much larger than those expected from differential
Galactic rotation, but they are nevertheless correlated with distance and
N(OVI), which reinforces our picture of a diverse population of hot plasma
regions that are ubiquitous over the entire Galactic disk. The velocity
extremes of the OVI profiles show a loose correlation with those of very strong
lines of less ionized species, supporting a picture of a turbulent, multiphase
medium churned by shock-heated gas from multiple supernova explosions.Comment: Accepted for publication in ApJS. Preprint with full resolution
images and all 148 spectra available at
http://www.astro.princeton.edu/~dvb/o
In situ observation of oscillatory redox dynamics of copper
How a catalyst behaves microscopically under reaction conditions, and what kinds of active sites transiently exist on its surface, is still very much a mystery to the scientific community. Here we present an in situ study on the red-ox behaviour of copper in the model reaction of hydrogen oxidation. Direct imaging combined with on-line mass spectroscopy shows that activity emerges near a phase boundary, where complex spatio-temporal dynamics are induced by the competing action of simultaneously present oxidizing and reducing agents. Using a combination of in situ imaging with in situ X-ray absorption spectroscopy and scanning photoemission microscopy, we reveal the relation between chemical and morphological dynamics and demonstrate that a static picture of active sites is insufficient to describe catalytic function of redox-active metal catalysts. The observed oscillatory redox dynamics provide a unique insight on phase-cooperation and a convenient and general mechanism for constant re-generation of transient active sites
An Integrated Strategy to Study Muscle Development and Myofilament Structure in Caenorhabditis elegans
A crucial step in the development of muscle cells in all metazoan animals is the assembly and anchorage of the sarcomere, the essential repeat unit responsible for muscle contraction. In Caenorhabditis elegans, many of the critical proteins involved in this process have been uncovered through mutational screens focusing on uncoordinated movement and embryonic arrest phenotypes. We propose that additional sarcomeric proteins exist for which there is a less severe, or entirely different, mutant phenotype produced in their absence. We have used Serial Analysis of Gene Expression (SAGE) to generate a comprehensive profile of late embryonic muscle gene expression. We generated two replicate long SAGE libraries for sorted embryonic muscle cells, identifying 7,974 protein-coding genes. A refined list of 3,577 genes expressed in muscle cells was compiled from the overlap between our SAGE data and available microarray data. Using the genes in our refined list, we have performed two separate RNA interference (RNAi) screens to identify novel genes that play a role in sarcomere assembly and/or maintenance in either embryonic or adult muscle. To identify muscle defects in embryos, we screened specifically for the Pat embryonic arrest phenotype. To visualize muscle defects in adult animals, we fed dsRNA to worms producing a GFP-tagged myosin protein, thus allowing us to analyze their myofilament organization under gene knockdown conditions using fluorescence microscopy. By eliminating or severely reducing the expression of 3,300 genes using RNAi, we identified 122 genes necessary for proper myofilament organization, 108 of which are genes without a previously characterized role in muscle. Many of the genes affecting sarcomere integrity have human homologs for which little or nothing is known
Binary systems and their nuclear explosions
Peer ReviewedPreprin
- …