3,876 research outputs found
Instrumentation and robotic image processing using top-down model control
A top-down image processing scheme is described. A three-dimensional model of a robotic working environment, with robot manipulators, workpieces, cameras, and on-the-scene visual enhancements is employed to control and direct the image processing, so that rapid, robust algorithms act in an efficient manner to continually update the model. Only the model parameters are communicated, so that savings in bandwidth are achieved. This image compression by modeling is especially important for control of space telerobotics. The background for this scheme lies in an hypothesis of human vision put forward by the senior author and colleagues almost 20 years ago - the Scanpath Theory. Evidence was obtained that repetitive sequences of saccadic eye movements, the scanpath, acted as the checking phase of visual pattern recognition. Further evidence was obtained that the scanpaths were apparently generated by a cognitive model and not directly by the visual image. This top-down theory of human vision was generalized in some sense to the frame in artificial intelligence. Another source of the concept arose from bioengineering instrumentation for measuring the pupil and eye movements with infrared video cameras and special-purpose hardware
Proteomic analysis of Bifidobacterium longum subsp. infantis reveals the metabolic insight on consumption of prebiotics and host glycans.
Bifidobacterium longum subsp. infantis is a common member of the intestinal microbiota in breast-fed infants and capable of metabolizing human milk oligosaccharides (HMO). To investigate the bacterial response to different prebiotics, we analyzed both cell wall associated and whole cell proteins in B. infantis. Proteins were identified by LC-MS/MS followed by comparative proteomics to deduce the protein localization within the cell. Enzymes involved in the metabolism of lactose, glucose, galactooligosaccharides, fructooligosaccharides and HMO were constitutively expressed exhibiting less than two-fold change regardless of the sugar used. In contrast, enzymes in N-Acetylglucosamine and sucrose catabolism were induced by HMO and fructans, respectively. Galactose-metabolizing enzymes phosphoglucomutase, UDP-glucose 4-epimerase and UTP glucose-1-P uridylytransferase were expressed constitutively, while galactokinase and galactose-1-phosphate uridylyltransferase, increased their expression three fold when HMO and lactose were used as substrates for cell growth. Cell wall-associated proteomics also revealed ATP-dependent sugar transport systems associated with consumption of different prebiotics. In addition, the expression of 16 glycosyl hydrolases revealed the complete metabolic route for each substrate. Mucin, which possesses O-glycans that are structurally similar to HMO did not induced the expression of transport proteins, hydrolysis or sugar metabolic pathway indicating B. infantis do not utilize these glycoconjugates
Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate.
Published onlineResearch Support, Non-U.S. Gov'tHuman activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function.EPSRCCampus FranceAgence National de RechercheDefraNERC Fellowshi
Glycosylated proteins preserved over millennia: N-glycan analysis of Tyrolean Iceman, Scythian Princess and Warrior.
An improved understanding of glycosylation will provide new insights into many biological processes. In the analysis of oligosaccharides from biological samples, a strict regime is typically followed to ensure sample integrity. However, the fate of glycans that have been exposed to environmental conditions over millennia has not yet been investigated. This is also true for understanding the evolution of the glycosylation machinery in humans as well as in any other biological systems. In this study, we examined the glycosylation of tissue samples derived from four mummies which have been naturally preserved: - the 5,300 year old "Iceman called Oetzi", found in the Tyrolean Alps; the 2,400 year old "Scythian warrior" and "Scythian Princess", found in the Altai Mountains; and a 4 year old apartment mummy, found in Vienna/Austria. The number of N-glycans that were identified varied both with the age and the preservation status of the mummies. More glycan structures were discovered in the contemporary sample, as expected, however it is significant that glycan still exists in the ancient tissue samples. This discovery clearly shows that glycans persist for thousands of years, and these samples provide a vital insight into ancient glycosylation, offering us a window into the distant past
The mTOR Pathway Independent Function of NPRL2 in the Regulation of S-Phase DNA Damage Response
https://openworks.mdanderson.org/sumexp22/1070/thumbnail.jp
Effects of distinct Polycystic Ovary Syndrome phenotypes on bone health
Polycystic Ovary Syndrome (PCOS) is a highly prevalent and heterogenous endocrinopathy affecting 5-18% of women. Although its cardinal features include androgen excess, ovulatory dysfunction, and/or polycystic ovarian morphology, women often display related metabolic manifestations, including hyperinsulinaemia, insulin resistance, and obesity. Emerging data reveal that the hormonal alterations associated with PCOS also impact bone metabolism. However, inconsistent evidence exists as to whether PCOS is a bone-protective or bone-hindering disorder with an accumulating body of clinical data indicating that hyperandrogenism, hyperinsulinaemia, insulin resistance, and obesity may have a relative protective influence on bone, whereas chronic low-grade inflammation and vitamin D deficiency may adversely affect bone health. Herein, we provide a comprehensive assessment of the endocrine and metabolic manifestations associated with PCOS and their relative effects on bone metabolism. We focus principally on clinical studies in women investigating their contribution to the alterations in bone turnover markers, bone mineral density, and ultimately fracture risk in PCOS. A thorough understanding in this regard will indicate whether women with PCOS require enhanced surveillance of bone health in routine clinical practice
Allogeneic Human Mesenchymal Stem Cell Therapy (Remestemcel-L, Prochymal) as a Rescue Agent for Severe Refractory Acute Graft-versus-Host Disease in Pediatric Patients
AbstractSevere steroid-refractory acute graft-versus-host disease (aGVHD) is related to significant mortality and morbidity after allogeneic stem cell transplantation. Early clinical trials of therapy with human mesenchymal stem cells (hMSCs) in pediatric patients with severe aGVHD resistant to multiple immunosuppressive agents showed promising results. In this study, we evaluated the risk/benefit profile of remestemcel-L (Prochymal), a third-party, off-the-shelf source of hMSCs, as a rescue agent for treatment-resistant aGVHD in pediatric patients. Children with grade B-D aGVHD failing steroids and, in most cases, other immunosuppressive agents were eligible for enrollment. Patients received 8 biweekly i.v. infusions of 2 × 106 hMSCs/kg for 4 weeks, with an additional 4 weekly infusions after day +28 for patients who achieved either a partial or mixed response. The enrolled patients compose a very challenging population with severe disease that was nonresponsive to the standard of care, with 88% of the patients experiencing severe aGVHD (grade C or D). Seventy-five patients (median age, 8 yr; 58.7% male; and 61.3% Caucasian) were treated in this study. Sixty-four patients (85.3%) had received an unrelated hematopoietic stem cell graft, and 28 patients (37.3%) had received a cord blood graft. At baseline, the distribution of aGVHD grades B, C, and D was 12.0%, 28.0%, and 60.0%, respectively. The median duration of aGVHD before enrollment was 30 d (range, 2 to 1639 d), and patients failed a median of 3 immunosuppressive agents. Organ involvement at baseline was 86.7% gastrointestinal, 54.7% skin, and 36.0% liver. Thirty-six patients (48.0%) had 2 organs involved, and 11 patients (14.7%) had all 3 organs involved. When stratified by aGVHD grade at baseline, the rate of overall response (complete and partial response) at day +28 was 66.7% for aGVHD grade B, 76.2% for grade C, and 53.3% for grade D. Overall response for individual organs at day +28 was 58.5% for the gastrointestinal system, 75.6% for skin, and 44.4% for liver. Collectively, overall response at day +28 for patients treated for severe refractory aGVHD was 61.3%, and this response was correlated with statistically significant improved survival at day +100 after hMSC infusion. Patients who responded to therapy by day +28 had a higher Kaplan-Meier estimated probability of 100-d survival compared with patients who did not respond (78.1% versus 31.0%; P < .001). Prochymal infusions were generally well tolerated, with no evidence of ectopic tissue formation
Thyroid function before, during and after COVID-19
Context:
The effects of COVID-19 on the thyroid axis remain uncertain. Recent evidence has been conflicting, with both thyrotoxicosis and suppression of thyroid function reported.
Objective:
We aimed to detail the acute effects of COVID-19 on thyroid function and determine if these effects persisted upon recovery from COVID-19.
Design:
Cohort observational study.
Participants and setting:
Adult patients admitted to Imperial College Healthcare National Health Service Trust, London, UK with suspected COVID-19 between March 9 to April 22, 2020 were included, excluding those with pre-existing thyroid disease and those missing either free thyroxine (FT4) or TSH measurements. Of 456 patients, 334 had COVID-19 and 122 did not.
Main Outcome Measures:
TSH and FT4 measurements at admission, and where available, those taken in 2019 and at COVID-19 follow-up.
Results:
Most patients (86·6%) presenting with COVID-19 were euthyroid, with none presenting with overt thyrotoxicosis. Patients with COVID-19 had a lower admission TSH and FT4 compared to those without COVID-19. In the COVID-19 patients with matching baseline thyroid function tests from 2019 (n=185 for TSH and 104 for FT4), both TSH and FT4 were reduced at admission compared to baseline. In a complete cases analysis of COVID-19 patients with TSH measurements at follow-up, admission and baseline (n=55), TSH was seen to recover to baseline at follow-up.
Conclusions:
Most patients with COVID-19 present with euthyroidism. We observed mild reductions in TSH and FT4 in keeping with a non-thyroidal illness syndrome. Furthermore, in survivors of COVID-19, thyroid function tests at follow-up returned to baseline
Acute effects of kisspeptin administration on bone metabolism in healthy men
CONTEXT: Osteoporosis results from disturbances in bone formation and resorption. Recent non-human data suggests that the reproductive hormone, kisspeptin, directly stimulates osteoblast differentiation in vitro and thus could have clinical therapeutic potential. However, the effects of kisspeptin on human bone metabolism are currently unknown. OBJECTIVE: To assess the effects of kisspeptin on human bone metabolism in vitro and in vivo. DESIGN: In vitro study: Mono- and co-cultures of human osteoblasts and osteoclasts treated with kisspeptin. Clinical study: Randomized, placebo-controlled, double-blind, two-way crossover clinical study in twenty-six men investigating the effects of acute kisspeptin administration (90 minutes) on human bone metabolism, with blood sampling every 30 minutes to +90 minutes. PARTICIPANTS: In vitro study: Twelve male blood donors and eight patients undergoing hip replacement surgery. Clinical Study: Twenty-six healthy eugonadal men (age 26.8±5.8 years). INTERVENTION: Kisspeptin (versus placebo). MAIN OUTCOME MEASURES: Changes in bone parameters and turnover markers. RESULTS: Incubation with kisspeptin in vitro increased alkaline phosphatase levels in human bone marrow mesenchymal stem cells by 41.1% (P=0.0022), and robustly inhibited osteoclastic resorptive activity by up to 53.4% (P<0.0001), in a dose-dependent manner. Kisspeptin administration to healthy men increased osteoblast activity, as evidenced by a 20.3% maximal increase in total osteocalcin (P=0.021) and 24.3% maximal increase in carboxylated osteocalcin levels (P=0.014). CONCLUSIONS: Collectively, these data provide the first human evidence that kisspeptin promotes osteogenic differentiation of osteoblast progenitors and inhibits bone resorption in vitro. Furthermore, kisspeptin acutely increases the bone formation marker osteocalcin but not resorption markers in healthy men, independent of downstream sex-steroid levels. Kisspeptin could therefore have clinical therapeutic application in the treatment of osteoporosis
- …