9 research outputs found

    Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands: responses to climatic and environmental changes

    Get PDF
    In this study, we compare annual fluxes of methane (CH4), nitrous oxide (N2O) and soil respiratory carbon dioxide (CO2) measured at nine European peatlands (n = 4) and shrublands (n = 5). The sites range from northern Sweden to Spain, covering a span in mean annual air temperature from 0 to 16 �C, and in annual precipitation from 300 to 1300mmyr−1. The effects of climate change, including temperature increase and prolonged drought, were tested at five shrubland sites. At one peatland site, the long-term (>30 yr) effect of drainage was assessed, while increased nitrogen deposition was investigated at three peatland sites. The shrublands were generally sinks for atmospheric CH4, whereas the peatlands were CH4 sources, with fluxes ranging from −519 to +6890 mgCH4-Cm−2 yr−1 across the studied ecosystems. At the peatland sites, annual CH4 emission increased with mean annual air temperature, while a negative relationship was found between net CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were generally small ranging from −14 to 42 mgN2O-Nm−2 yr−1. Highest N2O emission occurred at the sites that had highest nitrate (NO− 3 ) concentration in the soil water. Furthermore, experimentally increased NO− 3 deposition led to increased N2O efflux, whereas prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emissions in control plots ranged from 310 to 732 gCO2-Cm−2 yr−1. Drought and long-term drainage generally reduced the soil CO2 efflux, except at a hydric shrubland where drought tended to increase soil respiration. In terms of fractional importance of each greenhouse gas to the total numerical global warming response, the change in CO2 efflux dominated the response in all treatments (ranging 71–96 %), except for NO− 3 addition where 89% was due to change in CH4 emissions. Thus, in European peatlands and shrublands the effect on global warming induced by the investigated anthropogenic disturbances will be dominated by variations in soil CO2 fluxes

    Predicting effects of N pollutant load on plant species based on a dynamic soil eutrophication indicator. Final report on Nitrogen Effects on Dune Species (NEDS) project

    Get PDF
    The effects of nitrogen (N) pollution on dune grassland were explored using a model chain that predicts how plant species are likely to respond to changes in soil chemistry. The model chain was calibrated to data from an N addition and grazing experiment at Newborough in Anglesey. The N14C soil model predicted increases in plant productivity and plant litter carbon (C) inputs with more N addition, resulting in an initial and persistent increase in soil C/N ratio. This contrasts with predictions of decreasing C/N ratio from the simpler N saturation model currently used to calculate nutrient-N critical load exceedance. All N addition rates also caused persistent increases in plant-available N. Using the MultiMOVE niche models for plant species typical of dune grassland, these soil changes were related to changes in the overall nutrient enrichment of the flora, as indicated by mean Ellenberg N score, and thereby to the habitat’s suitability for particular species. Declines in Habitat Suitability were interpreted as increasing risk to the species. At rates above 30 kg N ha-1y-1, the more sensitive species were placed at risk almost immediately, but at smaller rates species were placed at risk later on, with an increasing delay with less N addition. At rates lower than the critical N load for calcareous fixed dunes, more mesotrophic species were placed at risk. Species viewed as positive indicators of habitat condition were placed at risk under both high and low rates of N addition. Changes in Habitat Suitability due to changed grazing regime had greater simulated effects on Habitat Suitability. For more confidence in the model chain, differences between the spatial and temporal effects of N addition need to be addressed. More information on the effects of N on vegetation structure and litterfall would be very useful, and objective measurements of vegetation height should be included in monitoring schemes alongside floristic recording. Management was shown to be critical for mitigating the effects of N. Although N removal through grazing or mowing is unlikely to export sufficient N to prevent enrichment, reducing vegetation height can prevent competitive species shading out the more distinctive low-growing, light-demanding dune species

    Peatland Plant Functional Type Effects on Early Decomposition Indicators are Non-Pervasive, but Microhabitat Dependent

    No full text
    Ombrotrophic peatlands are important long-term sinks for atmospheric carbon as plant productivity exceeds litter decomposition. Changes in plant community composition may alter decomposition rates through alterations in microbial communities and activity. Such plant community driven changes in decomposition rates may however differ between microhabitats. Nevertheless, the microhabitat-context-dependency of plant community composition effects on decomposition remains poorly understood. We used a long-term (> 10 year) plant removal experiment to study how vascular plant functional types (PFTs, i.e. graminoids and ericoids) influence decomposition processes in wet lawns and hummocks. We employed the Tea Bag Index (TBI) as an indicator for early litter decomposition and carbon stabilization and assessed the potential activity of five hydrolytic extracellular enzymes (EEAs) as indicators for microbial activity. PFT removal had no effect on the TBI decomposition rate constant (k), nor on the stabilization factor (S). Yet, k increased slightly when both PFTs were absent. In the lawns, we observed higher values of k and S as compared to hummocks. PFT composition influenced four out of five hydrolytic EEAs that can drive decomposition. Yet, this influence was non-pervasive and microhabitat dependent. In wet lawns, PFT removal generally increased enzyme activities, while opposite trends were detected in the hummocks. Our results suggest an important role for vegetation change, through their influence on enzyme activity, along the lawn-hummock gradient in regulating decomposition processes in northern peatlands. This implies that potential consequences of vegetation changes on organic matter turnover, hence the peatland carbon sink function, cannot be generalized across peatland microhabitats

    Slash-and-burn agriculture and tropical cyclone activity in Madagascar:implication for soil fertility dynamics and corn performance

    No full text
    On the western coast of Madagascar, the dry tropical forest of Kirindy may disappear in the next 50 years because of its rapid conversion into agricultural land by slash-and-burn cultivation. The slash-and-burn fields are cultivated during 3 years in average and are further abandoned because of soil depletion, weed invasion and finally lower crop yields. As a consequence, new forest areas are regularly cleared from the primary forest, causing deforestation. In addition, Madagascar is situated in a region with high cyclonic activity. Violent storms hit the western coast every 3–4 years, leading to intense rainfalls and floods. These events may enhance soil physical degradation and nutrient leaching, thereby accentuating the soil depletion by slash-and-burn agriculture and with it, the forest conversion rate. Focusing on the combined effects of historic land management and prevailing climatic conditions, this paper investigates: (1) the temporal evolution of soil fertility along with crop performance from cultivation up to field abandonment, and (2) the relative effects of land use (crop cultivation) and extreme climatic events (heavy rain, cyclonic storms) on soil and crop properties. We used a space-for-time substitution approach in slash-and-burn corn (Zea mays L.) fields to describe dynamics of soil fertility and crop performance. We sampled soils and plants during two seasons: (a) a normal rainy season, in 2014, and (b) a cyclonic rainy season, in 2015. We found that under the cyclonic storm, soil becomes not only N and P deficient, but the K concentration also steeply drops. Overall, this leads to a dramatic reduction of corn performance. While a decrease in grain yield due to slash-and-burn agriculture reaches about 37.5% after three years of cultivation on the same field (from 4 to 2.5 t ha−1), it decreases up to 75% after a single cyclonic rainy season (from 4 to 1 t ha−1). On the sidelines of the study, a locust pest also damaged half of the corn fields in 2014, driving the corn yield down to zero on those particular fields. Given what precedes, the study points out the fragility of traditional agricultural techniques against natural hazards. Along with global warming, the frequency and intensification of natural disasters are expected to increase, impacting negatively and strongly the livelihoods of rural farmers. This raises the urgent need to increase farmer’s awareness to alternative and more sustainable agricultural practices

    Data from: Peatland vascular plant functional types affect methane dynamics by altering microbial community structure

    No full text
    Item does not contain fulltext1. Peatlands are natural sources of atmospheric methane (CH4), an important greenhouse gas. It is established that peatland methane dynamics are controlled by both biotic and abiotic conditions, yet the interactive effect of these drivers is less studied and consequently poorly understood. 2. Climate change affects the distribution of vascular plant functional types (PFTs) in peatlands. By removing specific PFTs, we assessed their effects on peat organic matter chemistry, microbial community composition and on potential methane production (PMP) and oxidation (PMO) in two microhabitats (lawns and hummocks). 3. Whilst PFT removal only marginally altered the peat organic matter chemistry, we observed considerable changes in microbial community structure. This resulted in altered PMP and PMO. PMP was slightly lower when graminoids were removed, whilst PMO was highest in the absence of both vascular PFTs (graminoids and ericoids), but only in the hummocks. 4. Path analyses demonstrate that different plant–soil interactions drive PMP and PMO in peatlands and that changes in biotic and abiotic factors can have auto-amplifying effects on current CH4 dynamics. 5. Synthesis. Changing environmental conditions will, both directly and indirectly, affect peatland processes, causing unforeseen changes in CH4 dynamics. The resilience of peatland CH4 dynamics to environmental change therefore depends on the interaction between plant community composition and microbial communities

    N14C: A plant-soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition

    Get PDF
    The dynamic model N14C simulates changes in the plant–soil dynamics of nitrogen and carbon, brought about by the anthropogenic deposition of nitrogen. The model operates with four plant functional types; broadleaved and coniferous trees, herbs and dwarf shrubs. It simulates net primary production (NPP), C and N pools, leaching of dissolved organic carbon and nitrogen (DOC, DON) and inorganic nitrogen, denitrification, and the radiocarbon contents of organic matter, on an annual timestep. Soil organic matter (SOM) comprises three pools, undergoing first-order decomposition reactions with turnover rates ranging from c. 2 to c. 1000 years. Nitrogen immobilisation by SOM occurs if inorganic N remains after plant uptake, and leaching of inorganic N occurs if the immobilisation demand is met. SOM accumulates in the deeper soil by transport and sorption of DOM. Element soil pools accumulate with N inputs by fixation from 12,000 years ago until 1800, when anthropogenic N deposition begins. We describe the parameterisation of N14C with data from 42 published plot studies carried out in northern Europe, plus more general information on N deposition trends, soil radiocarbon, N fixation and denitrification. A general set of 12 parameters describing litter fractionation, N immobilisation, growing season length, DOC and DON leaching, denitrification and NH4 retention was derived by fitting the field data. This provided fair agreements between observations and simulations, which were appreciably improved by moderate (±20%) adjustments of the parameters for specific sites. The parameterised model gives reasonable blind predictions of ecosystem C and N variables from only temperature, precipitation, N deposition, and vegetation type. The results suggest an approximate doubling of NPP due to N deposition, although the majority of the sites remain N-limited. For a given N deposition, leaching rates of inorganic N at conifer and shrub sites exceed those at broadleaf and herb sites
    corecore