2,997 research outputs found

    Multi-shot laser ablation and digital micromirror device mask translation for sub-diffraction-limit machining resolution

    No full text
    Digital Micromirror Devices (DMDs) can offer rapidly generated, bespoke intensity modulation masks for image-projection-based laser-machining. Recent work has shown repeatable sub-micron feature patterning [1], with proposed applications in the medical sciences and photonics. While DMDs can offer rapid patterning, with ~32kHz switching speeds available [2], they are not yet efficient reflectors at <300nm, thus limiting machining resolution to the diffraction limit at the near-visible wavelengths and above

    Characterization of Microbial Population Shifts during Sample Storage

    Get PDF
    The objective of this study was to determine shifts in the microbial community structure and potential function based on standard Integrated Ocean Drilling Program (IODP) storage procedures for sediment cores. Standard long-term storage protocols maintain sediment temperature at 4°C for mineralogy, geochemical, and/or geotechnical analysis whereas standard microbiological sampling immediately preserves sediments at −80°C. Storage at 4°C does not take into account populations may remain active over geologic time scales at temperatures similar to storage conditions. Identification of active populations within the stored core would suggest geochemical and geophysical conditions within the core change over time. To test this potential, the metabolically active fraction of the total microbial community was characterized from IODP Expedition 325 Great Barrier Reef sediment cores prior to and following a 3-month storage period. Total RNA was extracted from complementary 2, 20, and 40 m below sea floor sediment samples, reverse transcribed to complementary DNA and then sequenced using 454 FLX sequencing technology, yielding over 14,800 sequences from the six samples. Interestingly, 97.3% of the sequences detected were associated with lineages that changed in detection frequency during the storage period including key biogeochemically relevant lineages associated with nitrogen, iron, and sulfur cycling. These lineages have the potential to permanently alter the physical and chemical characteristics of the sediment promoting misleading conclusions about the in situ biogeochemical environment. In addition, the detection of new lineages after storage increases the potential for a wider range of viable lineages within the subsurface that may be underestimated during standard community characterizations

    Haemophilus influenzae type b reemergence after combination immunization

    Get PDF
    An increase in Haemophilus influenzae type b (Hib) in British children has been linked to the widespread use of a diphtheria/tetanus/acellular pertussis combination vaccine (DTaP-Hib). We measured anti-polyribosyl-ribitol phos- phate antibody concentration and avidity before and after a Hib booster in 176 children 2–4 years of age who had received 3 doses of DTP-Hib (either DT whole cell pertus- sis-Hib or DTaP-Hib) combination vaccine in infancy. We also measured pharyngeal carriage of Hib. Antibody con- centrations before and avidity indices after vaccination were low (geometric mean concentration 0.46μg/mL, 95% confidence interval [CI] 0.36–0.58; geometric mean avidity index 0.16, 95% CI 0.14–0.18) and inversely related to the number of previous doses of DTaP-Hib (p = 0.02 and p<0.001, respectively). Hib was found in 2.1% (95% CI 0.7%–6.0%) of study participants. Our data support an association between DTaP-Hib vaccine combinations and clinical Hib disease through an effect on antibody concen- tration and avidit

    Simultaneous patterning and deposition of thin films via femtosecond laser-induced transfer using a digital micromirror device for spatial pulse shaping

    No full text
    The forward and backward femtosecond laser-induced transfer of thin films in an intact state with good adhesion, via a digital micromirror array acting as a dynamic object mask for spatial beam shaping is presented

    Nanofabrication technologies: high-throughput for tomorrow's metadevices

    No full text
    Fabrication fundamentals1. Serial versus parallel? Most are currently fabricated by serial writing….2. Additive or subtractive?3. Feature size required.4. One-off demonstration (journal paper) or volume production (in the shops by next Christmas…)5. What material?6. Cost….(+ normalise to 150mm diameter wafer)7. Time to fabricat

    Characterization of Metabolically Active Bacterial Populations in Subseafloor Nankai Trough Sediments above, within, and below the Sulfate–Methane Transition Zone

    Get PDF
    A remarkable number of microbial cells have been enumerated within subseafloor sediments, suggesting a biological impact on geochemical processes in the subseafloor habitat. However, the metabolically active fraction of these populations is largely uncharacterized. In this study, an RNA-based molecular approach was used to determine the diversity and community structure of metabolically active bacterial populations in the upper sedimentary formation of the Nankai Trough seismogenic zone. Samples used in this study were collected from the slope apron sediment overlying the accretionary prism at Site C0004 during the Integrated Ocean Drilling Program Expedition 316. The sediments represented microbial habitats above, within, and below the sulfate–methane transition zone (SMTZ), which was observed approximately 20 m below the seafloor (mbsf). Small subunit ribosomal RNA were extracted, quantified, amplified, and sequenced using high-throughput 454 pyrosequencing, indicating the occurrence of metabolically active bacterial populations to a depth of 57 mbsf. Transcript abundance and bacterial diversity decreased with increasing depth. The two communities below the SMTZ were similar at the phylum level, however only a 24% overlap was observed at the genus level. Active bacterial community composition was not confined to geochemically predicted redox stratification despite the deepest sample being more than 50 m below the oxic/anoxic interface. Genus-level classification suggested that the metabolically active subseafloor bacterial populations had similarities to previously cultured organisms. This allowed predictions of physiological potential, expanding understanding of the subseafloor microbial ecosystem. Unique community structures suggest very diverse active populations compared to previous DNA-based diversity estimates, providing more support for enhancing community characterizations using more advanced sequencing techniques

    Gaming motivation and problematic video gaming: The role of needs frustration

    Get PDF
    Motivation is often used as a predictor of a problematic style of video game engagement, implying that individuals' gaming undermines optimal functioning. Drawing from recent advances in Self-Determination Theory (SDT), the present study explores the links between gaming motivations, the daily frustration of basic psychological needs, and reports of problematic video gaming (PVG). A sample of 1029 participants (72.8% male; M = 22.96 years; SD = 4.13 years) completed items regarding their gaming engagement and gaming motivation as well as their experience of needs frustration and PVG symptoms. Results revealed positive associations between gaming motivations and PVG, and between daily needs frustration and PVG. Finally, after comparing several competing models, a mediational model whereby needs frustration explained the association between individuals' gaming motivation and PVG emerged as best fitting the data. The discussion addresses the theoretical and practical implications of these findings in the context of recent research

    Promotion of access to essential medicines for Non-Communicable Diseases: Practical implications of the UN Political Declaration

    Get PDF
    Access to medicines and vaccines to prevent and treat non-communicable diseases (NCDs) is unacceptably low worldwide. In the 2011 UN political declaration on the prevention and control of NCDs, heads of government made several commitments related to access to essential medicines, technologies, and vaccines for such diseases. 30 years of experience with policies for essential medicines and 10 years of scaling up of HIV treatment have provided the knowledge needed to address barriers to long-term effective treatment and prevention of NCDs. More medicines can be acquired within existing budgets with efficient selection, procurement, and use of generic medicines. Furthermore, low-income and middle-income countries need to increase mobilisation of domestic resources to cater for the many patients with NCDs who do not have access to treatment. Existing initiatives for HIV treatment offer useful lessons that can enhance access to pharmaceutical management of NCDs and improve adherence to long-term treatment of chronic illness; policy makers should also address unacceptable inequities in access to controlled opioid analgesics. In addition to off-patent medicines, governments can promote access to new and future on-patent medicinal products through coherent and equitable health and trade policies, particularly those for intellectual property. Frequent conflicts of interest need to be identified and managed, and indicators and targets for access to NCD medicines should be used to monitor progress. Only with these approaches can a difference be made to the lives of hundreds of millions of current and future patients with NCDs

    Microbial activity in the marine deep biosphere: progress and prospects

    Get PDF
    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth\u27s global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org)
    corecore