9 research outputs found
Deciphering relationships between the Nicobar and Bengal submarine fans, Indian Ocean
The Nicobar Fan and Bengal fans can be considered as the eastern and western parts, respectively, of the largest submarine-fan system in the world. This study presents the integrated results of petrographic and provenance studies from the Nicobar Fan and evaluates these in the context of controls on sedimentation. Both fans were predominantly supplied by Himalaya-derived material from the main tectono-stratigraphic sequences as well as the Gangdese arc. A lack of volcanic material in the Nicobar Fan rules out sources from the Sumatra magmatic arc. Overall, the petrographic data shows a progressive decrease in sedimentary detritus and corresponding increase of higher-grade metamorphic detritus up-section. Changes in sediment provenance and exhumation rates in the Himalaya are seen to track changes in sediment accumulation rates. High sediment accumulation rates in the Bengal Fan occurred at ∼13.5–8.3 Ma, and in the Nicobar Fan from ∼9.5–5 Ma. Both fans show peak accumulation rates at 9.5–8.3 Ma (but with the Nicobar Fan being about twice as high), and both record a sharp drop from ∼5.5–5.2 Ma, that coincided with a change in river drainage associated with the Brahmaputra River diverting west of the uplifting Shillong Plateau. At ∼5 Ma, the Nicobar Fan was supplied by an eastern drainage route that finally closed at ∼2 Ma, when sediment accumulation rates in the Nicobar Fan significantly decreased. Sediment provenance record these changes in routing whereby Bengal Fan deposits include granitoid sources from the Namche Barwa massif in the eastern syntaxis that are not seen in the Nicobar Fan, likely due to a more localised eastern drainage that included material from the Indo-Burman wedge. Prior to ∼3 Ma, source exhumation rates were rapid and constant, and the short lag-time rules out significant intermediate storage and mixing. In terms of climate versus tectonic controls, tectonically driven changes in the river network have had most influence on fan sedimentation
High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica.
The highest resolution Holocene sediment core from the Antarctic Peninsula to date was collected during the first SHALDRIL cruise (NBP0502). Drilling yielded a 108.2-m-long core (87% recovery; site NBP0502–1B) from Maxwell Bay, South Shetland Islands. This high-resolution sediment record comes from a region that is currently experiencing dramatic climate change and associated glacial retreat. Such records can help to constrain the nature of past climate change and causal mechanisms, and to provide a context for evaluating current climate change and its impacts. The base of the drill site sampled till and/or proximal glacimarine sediments resting directly on bedrock. Glacimarine suspension deposits composed of dark greenish gray silty mud with variable diatom abundance and scattered very fine sand laminations make up the majority of the sedimentary section. Detailed sedimentological and geochemical analyses, including magnetic susceptibility, total organic carbon (TOC) content, carbon and nitrogen isotopic composition, pebble content, and biogenic silica content, allow subdivision of the glacimarine section into nine units, and seismic facies analyses resulted in the identification of six distinct seismic units. We used 29 radiocarbon ages to construct an age model and calculate sedimentation rates that vary by two orders of magnitude, from 0.7 mm/a to ?30 mm/a. Radiocarbon ages from glacimarine sediments just above the till date back to between 14.1 and 14.8 ka. Thus, ice was grounded in the fjord during the Last Glacial Maximum and eroded older sediments from the fjord. Following initial retreat of grounded ice from Maxwell Bay, the fjord was covered by a permanent floating ice canopy, probably an ice tongue. The highest sedimentation rate corresponds to an interval that contains abundant sand laminations and gravelly mud intervals and likely represents a melt-out phase or period of rapid glacial retreat from 10.1 ka to 8.2 ka. There is no evidence for an early Holocene climatic reversal, as recorded farther south at the Palmer Deep drill site. Minimum sea-ice cover and warm water conditions occurred between 8.2 and 5.9 ka. From 5.9 to 2.6 ka, there was a gradual cooling and more extensive sea-ice cover in the bay. After 2.6 ka, the climate varied slightly, causing only subtle variation in glacier grounding lines. There is no compelling evidence for a Little Ice Age readvance in Maxwell Bay. The current warming and associated glacial response in the northern Antarctic Peninsula appears to be unprecedented in its synchroneity and widespread impact. <br/
The Integrated Ocean Drilling Program Expedition 338 Preliminary Report, NanTroSEIZE Stage 3: NanTroSEIZE plate boundary deep riser 2
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a multidisciplinary scientific project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through reflection and refraction seismic imaging, direct sampling, in situ measurements, and long-term monitoring in conjunction with laboratory and numerical modeling studies. The fundamental scientific objectives of NanTroSEIZE include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout an active plate boundary system. As part of the NanTroSEIZE program, operations during Integrated Ocean Drilling Program (IODP) Expedition 338 were planned to extend and case riser IODP Hole C0002F, begun during IODP Expedition 326 in 2010, from 856 to 3600 meters below the seafloor (mbsf). Riser operations extended the hole to 2005.5 mbsf, collecting a full suite of logging-while-drilling (LWD) and measurement-while-drilling, mud gas, and cuttings data. However, because of damage to the riser during unfavorable winds and strong current conditions, riser operations were cancelled. Hole C0002F was suspended at 2005.5 mbsf and left for reentry during future riser drilling operations, which will deepen the hole to penetrate the megasplay fault at ~5000 mbsf.
Contingency riserless operations included coring at Site C0002 (200–505, 902–940, and 1100.5–1120 mbsf), LWD at IODP Sites C0012 (0–709 mbsf) and C0018 (0–350 mbsf), and LWD and coring at IODP Sites C0021 (0–294 mbsf) and C0022 (0–420 mbsf). These sites and drilling intervals represent key targets not sampled during previous NanTroSEIZE expeditions but relevant to comprehensively characterize the alteration stage of the oceanic basement input to the subduction zone, the early stage of Kumano Basin evolution, gas hydrates in the forearc basin, and recent activity of the shallow megasplay fault zone system and submarine landslides.Peer Reviewe
Proceedings of the Integrated Ocean Drilling Program Volume 338, NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 2
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a multidisciplinary scientific project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through reflection and refraction seismic imaging, direct sampling, in situ measurements, and long-term monitoring in conjunction with laboratory and numerical modeling studies. The fundamental scientific objectives of NanTroSEIZE include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout an active plate boundary system. As part of the NanTroSEIZE program, operations during Integrated Ocean Drilling Program (IODP) Expedition 338 were planned to extend and case riser Hole C0002F, begun during IODP Expedition 326 in 2010, from 856 to 3600 meters below seafloor (mbsf). Riser operations extended the hole to 2005.5 mbsf, collecting a full suite of logging-while-drilling (LWD) and measurement-while-drilling, mud gas, and cuttings data. However, because of damage to the riser during unfavorable wind and strong current conditions, riser operations were cancelled. Hole C0002F was suspended at 2005.5 mbsf and left for reentry during future riser drilling operations, which will deepen the hole to penetrate the megasplay fault at ~5000 mbsf.Peer Reviewe
Bidirectional reflectance spectroscopy of carbonaceous chondrites: Implications for water quantification and primary composition
International audienceIn this study, we measured bidirectional reflectance spectra (0.5-4.0 μm) of 24 CMs, five CRs, one CI, one CV, and one C2 carbonaceous chondrites. These meteorites are known to have experienced an important variability in their relative degrees of aqueous alteration degree (Rubin et al. [2007]. Geochim. Cosmochim. Acta 71, 2361-2382; Howard et al. [2009]. Geochim. Cosmochim. Acta 73, 4576-4589; Howard et al. [2011]. Geochim. Cosmochim. Acta 75, 2735-2751; Alexander et al. [2013]. Geochim. Cosmochim. Acta 123, 244-260). These measurements were performed on meteorite powders inside an environmental cell under a primary vacuum and heated at 60 °C in order to minimize adsorbed terrestrial water. This protocol allows controlling of atmospheric conditions (i.e. humidity) in order to avoid contamination by terrestrial water. We discuss various spectral metrics (e.g. reflectance, band depth, single-scattering albedo, …) in the light of recent bulk composition characterization (Howard et al. [2009]. Geochim. Cosmochim. Acta 73, 4576-4589; Howard et al. [2015]. Geochim. Cosmochim. Acta 149, 206-222; Alexander et al. [2012]. Science 337, 721; Beck et al. [2014]. Icarus 229, 263-277; Garenne et al. [2014]. Geochim. Cosmochim. Acta 137, 93-112). This study reveals variability of reflectance among meteorite groups. The reflectance is not correlated with carbon or hydrogen abundance neither with measured grain size distribution. We suggest that it is rather controlled by the nature of accreted components, in particular the initial matrix/chondrule proportion. Band depth, integrated band depth, mean optical path length, normalized optical path length, effective single-particle absorption thickness were calculated on the so called 3-μm band for reflectance spectra and for single scattering albedo spectra. They were compared with hydrated phase proportions from previous study on the same meteorites by thermogravimetric analyses and infrared spectroscopy in transmission. We find that normalized optical path length (NOPL) is the most appropriate to quantify water abundance, with an absolute error of about 5 wt.%. These datasets also reveal a variability of the band shape between 2.8 and 2.9 μm, which is interpreted as reflecting variation in the chemical composition and structure of phyllosilicates. This chemical variation could also be used to quantify the aqueous alteration degree between meteorite groups. The combination of reflectance at 2 μm and the depth of 3-μm band can be combined, to classify carbonaceous chondrites in reflectance in term of primary composition (e.g. matrix/chondrule ratio, carbon content) and secondary processes (e.g. aqueous alteration, thermal metamorphism). This could be used to decipher the nature of aqueous alteration in C-complex asteroids
Local controls on sediment accumulation and distribution in a fjord in the West Antarctic Peninsula: implications for palaeoenvironmental interpretations
We analyse surface sediment and its distribution in Flandres Bay, West Antarctic Peninsula, in order to understand modern day sediment dispersal patterns in a fjord with retreating, tidewater glaciers. The surface sediment descriptions of 41 cores are included in this study. The sediment facies described include muddy diatomaceous ooze, diatomaceous mud, pebbly mud, sandy mud and mud, with scattered pebbles present in most samples. In contrast to a traditional conceptual model of glacial sediment distribution in fjords, grain size in Flandres Bay generally coarsens from the inner to outer bay. The smallest grain size sediments were found in the bay head and are interpreted as fine-grained deposits resulting from meltwater plumes and sediment gravity flows occurring close to the glacier front. The middle of the bay is characterized by a high silt percentage, which correlates to diatom-rich sediments. Sediments in the outer bay have a high component of coarse material, which is interpreted as being the result of winnowing from currents moving from the Bellingshausen Sea into the Gerlache Strait. Palaeoenvironmental reconstructions of glacial environments often use grain size as an indicator of proximity to the ice margin. After a detailed analysis of a large number of cores collected in the study area, our findings highlight the variability in sedimentation patterns within a fjord and provide a valuable evidence of the complexity that may occur in the sedimentary record