1,256 research outputs found

    Design Considerations for Efficient and Effective Microarray Studies

    Get PDF
    This paper describes the theoretical and practical issues in experimental design for gene expression microarrays. Specifically, this paper (1) discusses the basic principles of design (randomization, replication, and blocking) as they pertain to microarrays, and (2) provides some general guidelines for statisticians designing microarray studies

    Nonuniversal behavior of scattering between fractional quantum Hall edges

    Full text link
    Among the predicted properties of fractional quantum Hall states are fractionally charged quasiparticles and conducting edge-states described as chiral Luttinger liquids. In a system with a narrow constriction, tunneling of quasi-particles between states at different edges can lead to resistance and to shot noise. The ratio of the shot noise to the backscattered current, in the weak scattering regime, measures the fractional charge of the quasi-particle, which has been confirmed in several experiments. However, the non-linearity of the resistance predicted by the chiral Luttinger liquid theory was apparently not observed in some of these cases. As a possible explanation for these discrepancies, we consider a model where a smooth edge profile leads to formation of additional edge states. Coupling between the current carrying edge mode and the additional phonon like mode can lead to {\it nonuniversal} exponents in the current-voltage characteristic, while preserving the ratio between shot noise and the back-scattered current, for weak backscattering. For special values of the coupling, one may obtain a linear I-V behavior.Comment: 10 pages, 3 figure

    The Evolution of Quasiparticle Charge in the Fractional Quantum Hall Regime

    Full text link
    The charge of quasiparticles in a fractional quantum Hall (FQH) liquid, tunneling through a partly reflecting constriction with transmission t, was determined via shot noise measurements. In the nu=1/3 FQH state, a charge smoothly evolving from e*=e/3 for t=1 to e*=e for t<<1 was determined, agreeing with chiral Luttinger liquid theory. In the nu=2/5 FQH state the quasiparticle charge evolves smoothly from e*=e/5 at t=1 to a maximum charge less than e*=e/3 at t<<1. Thus it appears that quasiparticles with an approximate charge e/5 pass a barrier they see as almost opaque.Comment: 4 pages, Correct figure 3 and caption include

    Anomalous Exponent of the Spin Correlation Function of a Quantum Hall Edge

    Full text link
    The charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effective interaction for the spin degree of freedom in the long wavelength limit. The anomalous exponent may be determined by measuring nuclear spin relaxation rates in a narrow quantum Hall bar or in a quantum wire in strong magnetic fields.Comment: 4 pages, Revtex file, no figures. To appear in Physical Revews B, Rapid communication

    Role of soil texture, clay mineralogy, location, and temperature in coarse wood decomposition—a mesocosm experiment

    Get PDF
    Of all the major pools of terrestrial carbon (C), the dynamics of coarse woody debris (CWD) are the least understood. In contrast to soils and living vegetation, the study of CWD has rarely relied on ex situ methods for elaborating controls on decomposition rates. In this study, we report on a mesocosm incubation experiment examining how clay amount (8%, 16%, and 24% clay), clay type (soil reconstructed with kaolinite vs. montmorillonite), wood placement (on litter layer surface, at the litter layer–soil interface, buried in the mineral soil), and laboratory incubation temperature (10°, 20°, or 30°C) control decomposition rates of highly standardized stakes and blocks of coarse aspen wood. Clay type effect was pronounced, with wood decomposing more quickly in kaolinite- than in montmorillonite-amended soils, perhaps due to a combined effect of moisture and microbial access to the substrate. Clay amount had only very limited effect on wood decomposition, which was a function of contact with the mineral soil (Surface \u3c Interface \u3c Mineral), perhaps due to greater contact with the decomposer community. Temperature effects were significant and dependent on interactions with clay type and wood placement. Effects of temperature on wood decomposition declined as the effects of soil variables increased, suggesting a hierarchy of controls on wood decomposition rates. Both water content and temperature had a strong effect on wood decomposition. Our results highlight that multiple interacting factors likely regulate wood decomposition processes. Multifactorial field experiments are needed to examine the physical, chemical, and biological factors controlling wood decompositio
    • …
    corecore