68 research outputs found
Particle Acceleration in Cosmic Sites - Astrophysics Issues in our Understanding of Cosmic Rays
Laboratory experiments to explore plasma conditions and stimulated particle
acceleration can illuminate aspects of the cosmic particle acceleration
process. Here we discuss the cosmic-ray candidate source object variety, and
what has been learned about their particle-acceleration characteristics. We
identify open issues as discussed among astrophysicists. -- The cosmic ray
differential intensity spectrum is a rather smooth power-law spectrum, with two
kinks at the "knee" (~10^15 eV) and at the "ankle" (~3 10^18 eV). It is unclear
if these kinks are related to boundaries between different dominating sources,
or rather related to characteristics of cosmic-ray propagation. We believe that
Galactic sources dominate up to 10^17 eV or even above, and the extragalactic
origin of cosmic rays at highest energies merges rather smoothly with Galactic
contributions throughout the 10^15--10^18 eV range. Pulsars and supernova
remnants are among the prime candidates for Galactic cosmic-ray production,
while nuclei of active galaxies are considered best candidates to produce
ultrahigh-energy cosmic rays of extragalactic origin. Acceleration processes
are related to shocks from violent ejections of matter from energetic sources
such as supernova explosions or matter accretion onto black holes. Details of
such acceleration are difficult, as relativistic particles modify the structure
of the shock, and simple approximations or perturbation calculations are
unsatisfactory. This is where laboratory plasma experiments are expected to
contribute, to enlighten the non-linear processes which occur under such
conditions.Comment: accepted for publication in EPJD, topical issue on Fundamental
physics and ultra-high laser fields. From review talk at "Extreme Light
Infrastructure" workshop, Sep 2008. Version-2 May 2009: adjust some wordings
and references at EPJD proofs stag
Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics
Very-high energy (VHE) gamma quanta contribute only a minuscule fraction -
below one per million - to the flux of cosmic rays. Nevertheless, being neutral
particles they are currently the best "messengers" of processes from the
relativistic/ultra-relativistic Universe because they can be extrapolated back
to their origin. The window of VHE gamma rays was opened only in 1989 by the
Whipple collaboration, reporting the observation of TeV gamma rays from the
Crab nebula. After a slow start, this new field of research is now rapidly
expanding with the discovery of more than 150 VHE gamma-ray emitting sources.
Progress is intimately related with the steady improvement of detectors and
rapidly increasing computing power. We give an overview of the early attempts
before and around 1989 and the progress after the pioneering work of the
Whipple collaboration. The main focus of this article is on the development of
experimental techniques for Earth-bound gamma-ray detectors; consequently, more
emphasis is given to those experiments that made an initial breakthrough rather
than to the successors which often had and have a similar (sometimes even
higher) scientific output as the pioneering experiments. The considered energy
threshold is about 30 GeV. At lower energies, observations can presently only
be performed with balloon or satellite-borne detectors. Irrespective of the
stormy experimental progress, the success story could not have been called a
success story without a broad scientific output. Therefore we conclude this
article with a summary of the scientific rationales and main results achieved
over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic
rays, gamma rays and neutrinos: A survey of 100 years of research
On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle (Part One)
In October 1924, the Physical Review, a relatively minor journal at the time,
published a remarkable two-part paper by John H. Van Vleck, working in virtual
isolation at the University of Minnesota. Van Vleck combined advanced
techniques of classical mechanics with Bohr's correspondence principle and
Einstein's quantum theory of radiation to find quantum analogues of classical
expressions for the emission, absorption, and dispersion of radiation. For
modern readers Van Vleck's paper is much easier to follow than the famous paper
by Kramers and Heisenberg on dispersion theory, which covers similar terrain
and is widely credited to have led directly to Heisenberg's "Umdeutung" paper.
This makes Van Vleck's paper extremely valuable for the reconstruction of the
genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did
not take the next step and develop matrix mechanics himself.Comment: 82 page
Obtention d'un ion isolé, mesure précise de sa charge; correction à la loi de Stokes
Pas de Résumé disponibl
Mouvements browniens dans les gaz aux basses pressions
Pas de Résumé disponibl
- …