5,768 research outputs found

    Is it possible to establish reference values for ankle muscle isokinetic strength? A meta-analytical study

    Get PDF
    BACKGROUND: The importance of measuring ankle muscle strength (AMS) has been demonstrated in a variety of clinical areas. Much data has been accumulated using the Cybex Norm isokinetic dynamometer but a uniform framework does not exist. OBJECTIVE: To identify pertinent studies which have used the Cybex Norm to measure AMS in order to establish reference values. METHODS: A narrative review of the literature was used to identify papers that have used the Cybex Norm to measure isokinetic concentric and eccentric AMS. RESULTS: Fifty five research papers were identified but each study used a different isokinetic protocol. CONCLUSIONS: It is not possible to produce AMS reference values due to the wide variation in data collection methods. This is therefore an area of research that needs further exploration

    A dual telescope for spectroheliography in the extreme ultra-violet

    Get PDF
    Dual reflecting telescope design for ultraviolet spectroheliograph

    Foam composite structures

    Get PDF
    The need to include fire resistant foams into state of the art aircraft interior paneling to increase passenger safety in aircraft fires was studied. Present efforts were directed toward mechanical and fire testing of panels with foam inclusions. Skinned foam filled honeycomb and PBI structural foams were the two constructions investigated with attention being directed toward weight/performance/cost trade-off. All of the new panels demonstrated improved performance in fire and some were lighter weight but not as strong as the presently used paneling. Continued efforts should result in improved paneling for passenger safety. In particular the simple partial filling (fire side) of state-of-the-art honeycomb with fire resistant foams with little sacrifice in weight would result in panels with increased fire resistance. More important may be the retarded rate of toxic gas evolution in the fire due to the protection of the honeycomb by the foam

    Fundamental study in low-density gas dynamics Progress report, 1 Nov. 1968 - 30 Jun. 1969

    Get PDF
    Theoretical and experimental study of rarefied gas viscoseals in continuum to free molecular density range and speeds up to 30,000 rp

    Low-density polybenzimidazole foams for thermal insulation and fire protection

    Get PDF
    Fire-resistant and nonsmoking foam can be prepared in desirable density range of 24 to 50 kg/cu m by controlled thermal crosslinking of polybenzimidazole prepolymer. Reproducible foams of specific density can be produced by controlling volative content and melting temperature of prepolymer

    Spatial intensity distribution analysis: studies of G Protein-coupled receptor oligomerization

    Get PDF
    Spatial intensity distribution analysis (SpIDA) is a recently developed approach for determining quaternary structure information on fluorophore-labelled proteins of interest in situ. It can be applied to live or fixed cells and native tissue. Using confocal images, SpIDA generates fluorescence intensity histograms that are analysed by super-Poissonian distribution functions to obtain density and quantal brightness values of the fluorophore-labelled protein of interest. This allows both expression level and oligomerisation state of the protein to be determined. We describe the application of SpIDA to investigate the oligomeric state of G protein-coupled receptors (GPCRs) at steady state and following cellular challenge, and consider how SpIDA may be used to explore GPCR quaternary organisation in pathophysiology and to stratify medicines

    The Proposed Changes in the Selection and Tenure of Judges in Ohio

    Get PDF

    Solar Flare X-ray Source Motion as a Response to Electron Spectral Hardening

    Get PDF
    Context: Solar flare hard X-rays (HXRs) are thought to be produced by nonthermal coronal electrons stopping in the chromosphere, or remaining trapped in the corona. The collisional thick target model (CTTM) predicts that sources produced by harder power-law injection spectra should appear further down the legs or footpoints of a flare loop. Therefore, hardening of the injected power-law electron spectrum during flare onset should be concurrent with a descending hard X-ray source. Aims: To test this implication of the CTTM by comparing its predicted HXR source locations with those derived from observations of a solar flare which exhibits a nonthermally-dominated spectrum before the peak in HXRs, known as an early impulsive event. Methods: HXR images and spectra of an early impulsive C-class flare were obtained using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Images were reconstructed to produce HXR source height evolutions for three energy bands. Spatially-integrated spectral analysis was performed to isolate nonthermal emission, and to determine the power-law index of the electron injection spectrum. The observed height-time evolutions were then fit with CTTM-based simulated heights for each energy. Results: A good match between model and observed source heights was reached, requiring a density model that agreed well with previous studies of flare loop densities. Conclusions: The CTTM has been used to produce a descent of model HXR source heights that compares well with observations of this event. Based on this interpretation, downward motion of nonthermal sources should indeed occur in any flare where there is spectral hardening in the electron distribution during a flare. However, this would often be masked by thermal emission associated with flare plasma pre-heating.Comment: 8 pages, 5 figure

    Muscarinic receptor oligomerization

    Get PDF
    G protein-coupled receptors (GPCRs) have been classically described as monomeric entities that function by binding in a 1:1 stoichiometric ratio to both ligand and downstream signalling proteins. However, in recent years, a growing number of studies has supported the hypothesis that these receptors can interact to form dimers and higher order oligomers although the molecular basis for these interactions, the overall quaternary arrangements and the functional importance of GPCR oligomerization remain topics of intense speculation. Muscarinic acetylcholine receptors belong to class A of the GPCR family. Each muscarinic receptor subtype has its own particular distribution throughout the central and peripheral nervous systems. In the central nervous system, muscarinic receptors regulate several sensory, cognitive, and motor functions while, in the peripheral nervous system, they are involved in the regulation of heart rate, stimulation of glandular secretion and smooth muscle contraction. Muscarinic acetylcholine receptors have long been used as a model for the study of GPCR structure and function and to address aspects of GPCR dimerization using a broad range of approaches. In this review, the prevailing knowledge regarding the quaternary arrangement for the various muscarinic acetylcholine receptors has been summarized by discussing work ranging from initial results obtained using more traditional biochemical approaches to those generated with more modern biophysical techniques

    An assessment of Fe XX - Fe XXII emission lines in SDO/EVE data as diagnostics for high density solar flare plasmas using EUVE stellar observations

    Get PDF
    The Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory obtains extreme-ultraviolet (EUV) spectra of the full-disk Sun at a spectral resolution of ~1 A and cadence of 10 s. Such a spectral resolution would normally be considered to be too low for the reliable determination of electron density (N_e) sensitive emission line intensity ratios, due to blending. However, previous work has shown that a limited number of Fe XXI features in the 90-60 A wavelength region of EVE do provide useful N_e-diagnostics at relatively low flare densities (N_e ~ 10^11-10^12 cm^-3). Here we investigate if additional highly ionised Fe line ratios in the EVE 90-160 A range may be reliably employed as N_e-diagnostics. In particular, the potential for such diagnostics to provide density estimates for high N_e (~10^13 cm^-3) flare plasmas is assessed. Our study employs EVE spectra for X-class flares, combined with observations of highly active late-type stars from the Extreme Ultraviolet Explorer (EUVE) satellite plus experimental data for well-diagnosed tokamak plasmas, both of which are similar in wavelength coverage and spectral resolution to those from EVE. Several ratios are identified in EVE data which yield consistent values of electron density, including Fe XX 113.35/121.85 and Fe XXII 114.41/135.79, with confidence in their reliability as N_e-diagnostics provided by the EUVE and tokamak results. These ratios also allow the determination of density in solar flare plasmas up to values of ~10^13 cm^-3.Comment: 7 pages, 3 figures, 2 tables, MNRAS in pres
    corecore