305 research outputs found
Neural respiratory and circulatory interaction during chemoreceptor stimulation and cooling of ventral medulla in cats.
The effects on respiratory and sympathetic neural activity, measured as integrated phrenic and cervical nerve activities respectively, during changing input from the central chemoreceptors was studied in anaesthetized, paralysed cats whose carotid sinus nerves and vagus nerves had been cut. Central respiratory drive was altered either by graded cold block of the intermediate areas, located bilaterally near the ventral surface of the medulla oblongata, or by step increases in end-tidal PCO2. Cervical nerve activity showed both a tonic (or mean) level of activity and a prominent cyclic discharge that was in phase with phrenic nerve activity. Graded focal cooling of the intermediate areas to 20 degrees C when end-tidal PCO2 was kept constant caused progressive decreases in phrenic activity, the amplitude of the inspiratory related discharge and mean arterial pressure, but only a small decrease in mean cervical nerve activity. Cooling the intermediate areas in the absence of the inspiratory related discharge (i.e. when phrenic activity was below the apnoeic threshold) led to a much smaller decrease in arterial pressure. Step increases of end-tidal PCO2 caused progressive increases of both cervical and phrenic nerve activities. The increase in cervical activity was due primarily, if not wholly, to a progressive increase in the amplitude of the inspiratory related discharge. These findings show that the predominant effect on sympathetic activity during stimulation of the central chemoreceptor and graded cold block of the intermediate areas is a change in the amplitude of the inspiratory related discharge and suggest that the change in arterial pressure that accompanies central chemoreceptor stimulation and graded cold block of the intermediate areas is mediated by the inspiratory related discharge rather than by an increase in the mean level of sympathetic activity. When phrenic activity was lowered to below apnoeic threshold by cooling the intermediate areas, step increases in end-tidal PCO2 caused inhibition rather than stimulation of cervical nerve activity. This finding indicates that sympathetic neurones are not activated by central chemoreceptor input directly, but rather indirectly via intracranial connexions with neuronal networks involved in regulation of respiration
Mesencephalic stimulation elicits inhibition of phrenic nerve activity in cat.
1. Previous work from this laboratory has indicated that the mesencephalon is the anatomical substrate for a mechanism capable of inhibiting central respiratory drive in glomectomized cats for periods of up to 1 h or more following brief exposure to systemic hypoxia; phrenic nerve activity was used as an index of central respiratory drive. 2. The present study was undertaken to further localize the region responsible for the observed post-hypoxic inhibition of respiratory drive. We studied the phrenic nerve response to stimulations of the mesencephalon in anaesthetized, paralysed peripherally chemo-denervated cats with end-expired PCO2 and body temperature servo-controlled. 3. Stimulations of two types were employed. Electrical stimulation allowed rapid determination of sites from which phrenic inhibition could be elicited. Microinjections of excitatory amino acids were used subsequently in order to confine excitation to neuronal cell bodies and not axons of passage. 4. Stimulation of discrete regions of the ventromedial aspect of the mesencephalon in the vicinity of the red nucleus produced substantial inhibition of phrenic activity which lasted up to 45 min. Stimulation of other areas of the mesencephalon either produced no phrenic inhibition or resulted in a slight stimulation of phrenic activity. 5. The results are discussed in the context of the central respiratory response to hypoxia
Hypoxia stimulates binding of a cytoplasmic protein to a pyrimidine-rich sequence in the 3'-untranslated region of rat tyrosine hydroxylase mRNA
Reduced oxygen tension (hypoxia) induces a 3-fold increase in stability of mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, in the pheochromocytoma (PC12) clonal cell line. To investigate the possibility that RNA-protein interactions are involved in mediating this increase in stability, RNA gel shift assays were performed using different fragments of labeled TH mRNA and the S-100 fraction of PC12 cytoplasmic protein extracts. We identified a sequence within the 3'-untranslated region of TH mRNA that binds cytoplasmic protein
Microsomal prostaglandin E2 synthase-1 is induced by conditional expression of RET/PTC in thyroid PCCL3 cells through the activation of the MEK-ERK pathway
RET/PTC rearrangements are believed to be tumor-initiating events in papillary thyroid carcinomas. We identified microsomal prostaglandin E2 synthase-1 (mPGES-1) as a RET/PTC-inducible gene through subtraction hybridization cloning and expression profiling with custom microarrays. The inducible prostaglandin E2 (PGE2) biosynthetic enzymes cyclooxygenase-2 (COX-2) and mPGES-1 are up-regulated in many cancers. COX-2 is overexpressed in thyroid malignancies compared with benign nodules and normal thyroid tissues. Eicosanoids may promote tumorigenesis through effects on tumor cell growth, immune surveillance, and angiogenesis. Conditional RET/PTC1 or RET/PTC3 expression in PCCL3 thyroid cells markedly induced mPGES-1 and COX-2. PGE2 was the principal prostanoid and up-regulated (by approximately 60-fold), whereas hydroxyeicosatetraenoic acid metabolites were decreased, consistent with shunting of prostanoid biosynthesis toward PGE2 by coactivation of the two enzymes. RET/PTC activated mPGES-1 gene transcription. Based on experiments with kinase inhibitors, with PCCL3 cell lines with doxycycline-inducible expression of RET/PTC mutants with substitutions of critical tyrosine residues in the kinase domain, and lines with inducible expression of activated mutants of H-RAS and MEK1, RET/PTC was found to regulate mPGES-1 through Shc-RAS-MEK-ERK. These data show a direct relationship between activation of a tyrosine kinase receptor oncogene and regulation of PGE2 biosynthesis. As enzymes involved in prostanoid biosynthesis can be targeted with pharmacological inhibitors, these findings may have therapeutic implications
Early postnatal development of thyrotropin-releasing hormone (TRH) expression, TRH receptor binding, and TRH responses in neurons of rat brainstem
We investigated the postnatal development of the thyrotropin-releasing hormone (TRH)-containing raphe system in the brainstem of neonatal rats. Postnatal changes in TRH expression in nucleus (n.) raphe obscurus (ROb) and n. raphe pallidus (RPa) were evaluated by in situ hybridization using an 35S-labeled oligonucleotide probe complementary to TRH precursor mRNA. TRH mRNA expression was low at birth [postnatal day 0 (P0)], but was clearly evident by P7 and increased from that time to reach sustained high levels from P14 to P28. Consistent with this postnatal increase in TRH expression, we found increases in the density of TRH-immunoreactive (IR) fibers, which are derived from ROb and RPa, in the hypoglossal nucleus (nXII). TRH-IR fibers in nXII were very sparse at P0, but increased markedly over the first 2 postnatal weeks. The change in TRH innervation of nXII was closely matched by concomitant increases in 3H-methyl-TRH binding in nXII; specific TRH binding increased from very low levels at birth to high levels of P14. Finally, we recorded intracellularly the electrophysiological responses to TRH of hypoglossal motoneurons (HMs; n = 42) of neonatal rats (P0- P21) in a brainstem slice preparation. The response of neonatal HMs to TRH, in contrast to adult HMs, was highly variable. In some neonatal HMs, even at P0, TRH caused a depolarization with a decrease in input conductance (GN) that was characteristic of the response of all adult HMs. However, in other neonatal HMs, TRH was either without effect or caused a slight depolarization with no apparent change in GN, responses that were unlike those of adult HMs. A response was considered typical (i.e., “adult-like”) if GN decreased to < 85% of control. The percentage of cells responding in a typical manner increased progressively from 25% at P0-P2 to 100% after P11. In addition, we found that the density of TRH-sensitive current (normalized to cell capacitance) increased with postnatal age in HMs that responded in a typical manner, suggesting that expression of the TRH-sensitive conductance is also developmentally regulated. Together, these data indicate that the TRH raphe neuronal system of the rat brainstem is not fully mature at the time of birth but develops over the first few postnatal weeks. This was true of levels of TRH mRNA in caudal raphe nuclei, density of TRH-IR fibers and 3H-methyl-TRH binding in nXII, and also the manner and magnitude of electrophysiological responses of HMs to exogenously applied TRH
Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe
© Hawkins et al. Cerebral blood flow is highly sensitive to changes in CO2/H+ where an increase in CO2/H+ causes vasodilation and increased blood flow. Tissue CO2/H+ also functions as the main stimulus for breathing by activating chemosensitive neurons that control respiratory output. Considering that CO2/H+-induced vasodilation would accelerate removal of CO2/H+ and potentially counteract the drive to breathe, we hypothesize that chemosensitive brain regions have adapted a means of preventing vascular CO2/H+-reactivity. Here, we show in rat that purinergic signaling, possibly through P2Y2/4 receptors, in the retrotrapezoid nucleus (RTN) maintains arteriole tone during high CO2/H+ and disruption of this mechanism decreases the CO2ventilatory response. Our discovery that CO2/H+-dependent regulation of vascular tone in the RTN is the opposite to the rest of the cerebral vascular tree is novel and fundamentally important for understanding how regulation of vascular tone is tailored to support neural function and behavior, in this case the drive to breathe
Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network
Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation
Unstable Maternal Environment, Separation Anxiety, and Heightened CO2 Sensitivity Induced by Gene-by-Environment Interplay
Background: In man, many different events implying childhood separation from caregivers/unstable parental environment
are associated with heightened risk for panic disorder in adulthood. Twin data show that the occurrence of such events in
childhood contributes to explaining the covariation between separation anxiety disorder, panic, and the related
psychobiological trait of CO2 hypersensitivity. We hypothesized that early interference with infant-mother interaction could
moderate the interspecific trait of response to CO2 through genetic control of sensitivity to the environment.
Methodology: Having spent the first 24 hours after birth with their biological mother, outbred NMRI mice were crossfostered
to adoptive mothers for the following 4 post-natal days. They were successively compared to normally-reared
individuals for: number of ultrasonic vocalizations during isolation, respiratory physiology responses to normal air (20%O2),
CO2-enriched air (6% CO2), hypoxic air (10%O2), and avoidance of CO2-enriched environments.
Results: Cross-fostered pups showed significantly more ultrasonic vocalizations, more pronounced hyperventilatory
responses (larger tidal volume and minute volume increments) to CO2-enriched air and heightened aversion towards CO2-
enriched environments, than normally-reared individuals. Enhanced tidal volume increment response to 6%CO2 was present
at 16–20, and 75–90 postnatal days, implying the trait’s stability. Quantitative genetic analyses of unrelated individuals, sibs
and half-sibs, showed that the genetic variance for tidal volume increment during 6%CO2 breathing was significantly higher
(Bartlett x = 8.3, p = 0.004) among the cross-fostered than the normally-reared individuals, yielding heritability of 0.37 and
0.21 respectively. These results support a stress-diathesis model whereby the genetic influences underlying the response to
6%CO2 increase their contribution in the presence of an environmental adversity. Maternal grooming/licking behaviour, and
corticosterone basal levels were similar among cross-fostered and normally-reared individuals.
Conclusions: A mechanism of gene-by-environment interplay connects this form of early perturbation of infant-mother
interaction, heightened CO2 sensitivity and anxiety. Some no
- …