25,933 research outputs found
On the stability analysis of periodic sine-Gordon traveling waves
We study the spectral stability properties of periodic traveling waves in the
sine-Gordon equation, including waves of both subluminal and superluminal
propagation velocities as well as waves of both librational and rotational
types. We prove that only subluminal rotational waves are spectrally stable and
establish exponential instability in the other three cases. Our proof corrects
a frequently cited one given by Scott.Comment: 22 pages, 6 figure
Multi-Wavelength Study of Sgr A*: The Short Time Scale Variability
To understand the correlation and the radiation mechanism of flare emission
in different wavelength bands, we have coordinated a number of telescopes to
observe SgrA* simultaneously. We focus only on one aspect of the preliminary
results of our multi-wavelength observing campaigns, namely, the short time
scale variability of emission from SgrA* in near-IR, X-ray and radio
wavelengths. The structure function analysis indicate most of the power
spectral density is detected on hourly time scales in all wavelength bands. We
also report minute time scale variability at 7 and 13mm placing a strong
constraint on the nature of the variable emission. The hourly time scale
variability can be explained in the context of a model in which the peak
frequency of emission shifts toward lower frequencies as a self-absorbed
synchrotron source expands adiabatically near the acceleration site. The short
time scale variability, on the other hand, places a strong constraint on the
size of the emitting region. Assuming that rapid minute time scale fluctuations
of the emission is optically thick in radio wavelength, light travel arguments
requires relativistic particle energy, thus suggesting the presence of outflow
from SgrA*.Comment: 9 pages, 4 figures, The Galactic Center: A Window on the Nuclear
Environment of Disk Galaxies ASP Conference Series, 2010 eds: M. Morris, D.
Q. Wang and F. Yua
The visual standards for the selection and retention of astronauts
Literature search with abstracts on visual performance standards for selection and retention of astronaut
Recommended from our members
Functional Imaging of the Outer Retinal Complex using High Fidelity Imaging Retinal Densitometry
We describe a new technique, high fidelity Imaging Retinal Densitometry (IRD), which probes the functional integrity of the outer retinal complex. We demonstrate the ability of the technique to map visual pigment optical density and synthesis rates in eyes with and without macular disease. A multispectral retinal imaging device obtained precise measurements of retinal reflectance over space and time. Data obtained from healthy controls and 5 patients with intermediate AMD, before and after photopigment bleaching, were used to quantify visual pigment metrics. Heat maps were plotted to summarise the topography of rod and cone pigment kinetics and descriptive statistics conducted to highlight differences between those with and without AMD. Rod and cone visual pigment synthesis rates in those with AMD (v = 0.043 SD 0.019 min-1 and v = 0.119 SD 0.046 min-1, respectively) were approximately half those observed in healthy controls (v = 0.079 SD 0.024 min-1 for rods and v = 0.206 SD 0.069 min-1 for cones). By mapping visual pigment kinetics across the central retina, high fidelity IRD provides a unique insight into outer retinal complex function. This new technique will improve the phenotypic characterisation, diagnosis and treatment monitoring of various ocular pathologies, including AMD
A Large-Diameter Hollow-Shaft Cryogenic Motor Based on a Superconducting Magnetic Bearing for Millimeter-Wave Polarimetry
In this paper we present the design and measured performance of a novel
cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is
tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a
HWP is rapidly rotated in front of a polarization analyzer or
polarization-sensitive detector. This polarimetry technique is commonly used in
cosmic microwave background (CMB) polarization studies. The SMB we use is
composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous
neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor
because the HWP is ultimately installed in the rotor. The motor presented here
has a 100 mm diameter rotor aperture. However, the design can be scaled up to
rotor aperture diameters of approximately 500 mm. Our motor system is composed
of four primary subsystems: (i) the rotor assembly, which includes the NdFeB
ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an
incremental encoder, and (iv) the drive electronics. While the YBCO is cooling
through its superconducting transition, the rotor is held above the stator by a
novel hold and release mechanism (HRM). The encoder subsystem consists of a
custom-built encoder disk read out by two fiber optic readout sensors. For the
demonstration described in this paper, we ran the motor at 50 K and tested
rotation frequencies up to approximately 10 Hz. The feedback system was able to
stabilize the the rotation speed to approximately 0.4%, and the measured rotor
orientation angle uncertainty is less than 0.15 deg. Lower temperature
operation will require additional development activities, which we will
discuss
Connection between the elastic GEp/GMp and P to Delta form factors
It is suggested that the falloff in Qsq of the P to Delta magnetic form
factor GM* is related to the recently observed falloff of the elastic electric
form factor GEp/GMp. Calculation is carried out in the framework of a GPD
mechanism
- …