2,663 research outputs found

    MedlinePlus??: The National Library of Medicine?? Brings Quality Information to Health Consumers

    Get PDF
    The National Library of Medicine???s (NLM??) MedlinePlus?? is a high-quality gateway to consumer health information from NLM, the National Institutes of Health (NIH), and other authoritative organizations. For decades, NLM has been a leader in indexing, organizing, and distributing health information to health professionals. In creating MedlinePlus, NLM uses years of accumulated expertise and technical knowledge to produce an authoritative, reliable consumer health Web site. This article describes the development of MedlinePlus???its quality control processes, the integration of NLM and NIH information, NLM???s relationship to other institutions, the technical and staffing infrastructures, the use of feedback for quality improvement, and future plans.published or submitted for publicatio

    Compartment-based reconstruction of acquisition-weighted 31P cardiac MRSI reduces sensitivity to cardiac motion and scan planning

    Get PDF
    Motivation:31P magnetic resonance spectroscopic imaging (31P MRSI) is a powerful technique for investigating the metabolic effects of treatments for heart failure in vivo, allowing a better understanding of their mechanism of action in patient cohorts. Unfortunately, cardiac 31P MRSI is fundamentally limited by low SNR, which leads to compromises in acquisition, such as no cardiac or respiratory gating or low spatial resolution, in order to achieve reasonable scan times. Spectroscopy with linear algebra modeling (SLAM) reconstruction may be able to address these challenges and therefore improve repeatability by incorporating a segmented localizer into the reconstruction.Methods: Six healthy volunteers were scanned twice in a test–retest procedure to allow quantification of repeatability. Each scan consisted of anatomical localizers and two acquisition-weighted (AW) 31P MRSI acquisitions, which were acquired with and without cardiac gating. Five patients with heart failure with a preserved ejection fraction were then scanned with the same 31P MRSI sequence without cardiac gating. All 31P MRSI datasets were reconstructed with both conventional Fourier transform (FT)-based reconstruction and SLAM reconstruction, which were compared statistically. The effect of shifting the 31P MRSI acquisition field of view was also investigated.Results: In the healthy volunteer cohort, the spectral fit of the SLAM reconstructions had significantly improved Cramer–Rao lower bounds (CRLBs) compared to the FT-based reconstruction of non-cardiac gated data, as well as improved coefficients of variability and repeatability. The SLAM reconstruction found a significant difference in the PCr/ATP ratio between the healthy volunteer and patient cohorts, which the FT-based reconstruction did not find. Furthermore, the SLAM reconstruction was less influenced by the placement of the field of view (FOV) of the 31P MRSI acquisition in post hoc analysis.Discussion: The experimental benefits of the SLAM reconstruction for AW data were demonstrated by the improvements in fit confidence and repeatability seen in the healthy volunteer cohort and post hoc FOV analysis. The benefit of SLAM reconstruction of AW data for clinical studies was then illustrated by the patient cohort, which suggested improved sensitivity to clinically significant changes in the PCr/ATP ratio

    A 3D-Hybrid-Shot Spiral Sequence for Hyperpolarized 13^{13}C Imaging

    Full text link
    Purpose: Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-Spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imaging, but the optimum readout strategy is not yet known. Methods: In this work we propose a novel 3D hybrid-shot spiral sequence which features two constant density regions that permit the retrospective reconstruction of either high spatial or high temporal resolution images post hoc, (adaptive spatiotemporal imaging) allowing greater flexibility in acquisition and reconstruction. Results: We have implemented this sequence, both via simulation and on a pre-clinical scanner, to demonstrate its feasibility, in both a 1H phantom and with hyperpolarized 13C pyruvate in vivo. Conclusion: This sequence forms an attractive method for acquiring hyperpolarized imaging datasets, providing adaptive spatiotemporal imaging to ameliorate the conflict of spatial and temporal resolution, with significant potential for clinical translation

    Effect of Arm Eccentric Exercise on Muscle Damage of the Knee Flexors After High-Intensity Eccentric Exercise

    Get PDF
    Repeated bout effect (RBE) describes a phenomenon that an initial unaccustomed eccentric exercise (ECC) bout can confer a protective effect against muscle damage from the subsequent same exercise. This protection has been observed in the same muscle, as well as the contralateral homologous (CL-RBE) muscle. But it is unknown whether the RBE is evident for non-local unrelated heterogonous muscles. The purpose of this study was to examine whether an initial elbow flexion (EF) muscle-damaging ECC could confer RBE against muscle damage from the subsequent ECC performed in the remote lower limb knee flexor (KF) muscle group. Twenty-seven young individuals were randomly assigned into the experimental (EXP: n = 15) and the control (CON: n = 12) groups. All participants performed a baseline unilateral KF ECC (six sets of 10 repetitions) on a randomly chosen leg. After a washout period (4 weeks), the EXP group performed 60 high-intensity unilateral EF ECC on a randomly chosen arm, followed by the same intensity exercise using the contralateral KF muscle group 2 weeks later. The CON group performed the same contralateral KF ECC, but with no prior EF ECC bout. Changes in the KF muscle damage indirect markers (muscle soreness, range of motion, and maximal isometric strength) after the ECC were compared between the baseline and second bouts for both groups with mixed factorial three-way (group × bout × time) ANOVA. Additionally, index of protection for each damage marker was calculated at 1 and 2 days after the ECC and compared between groups with independent t-tests. For both groups, the magnitude of the changes in the damage markers between the baseline and the second ECC bouts were not significantly different (all values of p \u3e 0.05). As for the index of protection, relative to the CON, the EXP showed an exacerbating damaging effect on the KF isometric strength following the second ECC bout, particularly at the 1-day post-exercise time point (index of protection: EXP vs. CON mean ± SD = −29.36 ± 29.21 vs. 55.28 ± 23.83%, p = 0.040). Therefore, our results do not support the existence of non-local RBE

    Data Fusion of Remote-sensing and In-lake chlorophyll a Data Using Statistical Downscaling

    Get PDF
    Chlorophyll a is a green pigment, used as an indirect measure of lake water quality. Its strong absorption of blue and red light allows for quantification through satellite images, providing better spatial coverage than traditional in-lake samples. However, grid-cell scale imagery must be calibrated spatially using in-lake point samples, presenting a change-of-support problem. This paper presents a method of statistical downscaling, namely a Bayesian spatially-varying coefficient regression, which assimilates remotely-sensed and in-lake data, resulting in a fully calibrated spatial map of chlorophyll a with associated uncertainty measures. The model is applied to a case study dataset from Lake Balaton, Hungary

    Rapid, B1B_1-insensitive, dual-band quasi-adiabatic saturation transfer with optimal control for complete quantification of myocardial ATP flux

    Full text link
    Purpose: Phosphorus saturation-transfer experiments can quantify metabolic fluxes non-invasively. Typically, the forward flux through the creatine-kinase reaction is investigated by observing the decrease in phosphocreatine (PCr) after saturation of γ\gamma-ATP. The quantification of total ATP utilisation is currently under-explored, as it requires simultaneous saturation of inorganic phosphate (Pi) and PCr. This is challenging, as currently available saturation pulses reduce the already-low γ\gamma-ATP signal present. Methods: Using a hybrid optimal-control and Shinnar-Le-Roux method, a quasi-adiabatic RF pulse was designed for the dual-saturation of PCr and Pi to enable determination of total ATP utilisation. The pulses were evaluated in Bloch equation simulations, compared with a conventional hard-cosine DANTE saturation sequence, before application to perfused rat hearts at 11.7 Tesla. Results: The quasi-adiabatic pulse was insensitive to a >2.5>2.5-fold variation in B1B_1, producing equivalent saturation with a 53% reduction in delivered pulse power and a 33-fold reduction in spillover at the minimum effective B1B_1. This enabled the complete quantification of the synthesis and degradation fluxes for ATP in 30-45 minutes in the perfused rat heart. While the net synthesis flux (4.24±0.84.24\pm0.8 mM/s, SEM) was not significantly different from degradation flux (6.88±26.88\pm2 mM/s, p=0.06p=0.06) and both measures are consistent with prior work, nonlinear error analysis highlights uncertainties in the Pi-to-ATP measurement that may explain a trend suggesting a possible imbalance. Conclusion: This work demonstrates a novel quasi-adiabatic dual-saturation RF pulse with significantly improved performance that can be used to measure ATP turnover in the heart in vivo.Comment: 26 pages, Accepted at Magnetic Resonance in Medicine, 24/11/2020 [This version post reviews

    Concussion-reporting behavior in rugby: A national survey of rugby union players in the United States

    Get PDF
    Background: Rugby is the fastest growing team sport in the United States for male and female athletes. It is a contact/collision sport with an injury risk profile that includes concussions. Purpose: To examine the prevalence of concussions in male and female rugby players in the United States and to characterize behaviors around reporting concussions that could be a target for prevention and treatment efforts. Study Design: Cross-sectional study; Level of evidence, 3. Methods: An online survey distributed to active members on the USA Rugby membership list was used to examine self-reported concussions in male and female athletes. Concussion-reporting behaviors and return to play after a concussion were also explored. Statistical analysis was used to compare male with female athletes and report differences, with years of experience as a dependent variable. Results: The proportion of athletes with a history of at least 1 concussion was 61.9% in all respondents. Of those who reported a concussion, 50.8% reported the concussion during the game or practice in which it occurred, and 57.6% reported at least 1 concussion to a qualified medical provider. Overall, 27.7% of participants who reported ≥1 rugby-related concussion in our survey noted that at least 1 of these concussions was not formally reported. The most commonly cited reasons for not reporting a concussion included not thinking that it was a serious injury, not knowing that it was a concussion at the time, and not wanting to be pulled out of the game or practice. Additionally, 61.0% of athletes did not engage in recommended return-to-play protocols after their most recent rugby-related concussion. Conclusion: US rugby union athletes may not report concussions to medical personnel or follow return-to-play protocols guided by medical advice. This could result from a lack of education on concussion recognition and the risks associated with continued play after a concussion as well as limited access to health care. Further education efforts focusing on the identification of concussions, removal from play, and return-to-play protocols are necessary in the US rugby union population

    Kinase activity is not required for αCaMKII-dependent presynaptic plasticity at CA3-CA1 synapses

    Get PDF
    Using targeted mouse mutants and pharmacologic inhibition of αCaMKII, we demonstrate that the αCaMKII protein, but not its activation, autophosphorylation or its ability to phosphorylate synapsin I, is required for normal short-term presynaptic plasticity. Furthermore, αCaMKII regulates the number of docked vesicles independent of its ability to be activated. These results indicate that αCaMKII has a nonenzymatic role in short-term presynaptic plasticity at hippocampal CA3-CA1 synapses. © 2007 Nature Publishing Group
    corecore