607 research outputs found

    Cavity cooling a single charged nanoparticle

    Full text link
    The development of laser cooling coupled with the ability to trap atoms and ions in electromagnetic fields, has revolutionised atomic and optical physics, leading to the development of atomic clocks, high-resolution spectroscopy and applications in quantum simulation and processing. However, complex systems, such as large molecules and nanoparticles, lack the simple internal resonances required for laser cooling. Here we report on a hybrid scheme that uses the external resonance of an optical cavity, combined with radio frequency (RF) fields, to trap and cool a single charged nanoparticle. An RF Paul trap allows confinement in vacuum, avoiding instabilities that arise from optical fields alone, and crucially actively participates in the cooling process. This system offers great promise for cooling and trapping a wide range of complex charged particles with applications in precision force sensing, mass spectrometry, exploration of quantum mechanics at large mass scales and the possibility of creating large quantum superpositions.Comment: 8 pages, 5 figures Updated version includes additional references, new title, and supplementary information include

    Optomechanical cooling of levitated spheres with doubly-resonant fields

    Full text link
    Optomechanical cooling of levitated dielectric particles represents a promising new approach in the quest to cool small mechanical resonators towards their quantum ground state. We investigate two-mode cooling of levitated nanospheres in a self-trapping regime. We identify a rich structure of split sidebands (by a mechanism unrelated to usual strong-coupling effects) and strong cooling even when one mode is blue detuned. We show the best regimes occur when both optical fields cooperatively cool and trap the nanosphere, where cooling rates are over an order of magnitude faster compared to corresponding single-sideband cooling rates.Comment: 8 Pages, 7 figure

    Chemical Changes in the Serum Associated With Equine Encephalomyelitis and Moldy Corn Poisoning of Horses

    Get PDF
    Specific infectious equine encephalomyelitis and moldy corn poisoning in horses are becoming more prevalent in Iowa yearly. Encephalomyelitis has been described, the etiology determined, the mode of transmission established and the typical clinical and pathological findings resolved

    Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.Einstein realized that the fluctuations of a Brownian particle can be used to ascertain the properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics and leading to applications from energy harvesting to medical imaging. Here, we use heated optically levitated nanospheres to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and provides a means for testing non-equilibrium thermodynamics. © 2014 Macmillan Publishers Limited. All rights reserved.EPSRCRoyal Thai GovernmentRoyal SocietyEuropean COST networ

    Dynamics of levitated nanospheres: towards the strong coupling regime

    Get PDF
    The use of levitated nanospheres represents a new paradigm for the optomechanical cooling of a small mechanical oscillator, with the prospect of realising quantum oscillators with unprecedentedly high quality factors. We investigate the dynamics of this system, especially in the so-called self-trapping regimes, where one or more optical fields simultaneously trap and cool the mechanical oscillator. The determining characteristic of this regime is that both the mechanical frequency ωM\omega_M and single-photon optomechanical coupling strength parameters gg are a function of the optical field intensities, in contrast to usual set-ups where ωM\omega_M and gg are constant for the given system. We also measure the characteristic transverse and axial trapping frequencies of different sized silica nanospheres in a simple optical standing wave potential, for spheres of radii r=20500r=20-500\,nm, illustrating a protocol for loading single nanospheres into a standing wave optical trap that would be formed by an optical cavity. We use this data to confirm the dependence of the effective optomechanical coupling strength on sphere radius for levitated nanospheres in an optical cavity and discuss the prospects for reaching regimes of strong light-matter coupling. Theoretical semiclassical and quantum displacement noise spectra show that for larger nanospheres with r100r \gtrsim 100\,nm a range of interesting and novel dynamical regimes can be accessed. These include simultaneous hybridization of the two optical modes with the mechanical modes and parameter regimes where the system is bistable. We show that here, in contrast to typical single-optical mode optomechanical systems, bistabilities are independent of intracavity intensity and can occur for very weak laser driving amplitudes

    Effects of Surface Geology on Seismic Ground Motion Deduced from Ambient-Noise Measurements in the Town of Avellino, Irpinia Region (Italy)

    Get PDF
    The effects of surface geology on ground motion provide an important tool in seismic hazard studies. It is well known that the presence of soft sediments can cause amplification of the ground motion at the surface, particularly when there is a sharp impedance contrast at shallow depth. The town of Avellino is located in an area characterised by high seismicity in Italy, about 30 km from the epicentre of the 23 November 1980, Irpinia earthquake (M = 6.9). No earthquake recordings are available in the area. The local geology is characterised by strong heterogeneity, with impedance contrasts at depth. We present the results from seismic noise measurements carried out in the urban area of Avellino to evaluate the effects of local geology on the seismic ground motion. We computed the horizontal-to-vertical (H/V) noise spectral ratios at 16 selected sites in this urban area for which drilling data are available within the first 40 m of depth. A Rayleigh wave inversion technique using the peak frequencies of the noise H/V spectral ratios is then presented for estimating Vs models, assuming that the thicknesses of the shallow soil layers are known. The results show a good correspondence between experimental and theoretical peak frequencies, which are interpreted in terms of sediment resonance. For one site, which is characterised by a broad peak in the horizontal-to-vertical spectral-ratio curve, simple one-dimensional modelling is not representative of the resonance effects. Consistent variations in peak amplitudes are seen among the sites. A site classification based on shear-wave velocity characteristics, in terms of Vs30, cannot explain these data. The differences observed are better correlated to the impedance contrast between the sediments and basement. A more detailed investigation of the physical parameters of the subsoil structure, together with earthquake data, are desirable for future research, to confirm these data in terms of site response

    Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

    Full text link
    Einstein realised that the fluctuations of a Brownian particle can be used to ascertain properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics, and leading to applications from energy harvesting to medical imaging. Here we use optically levitated nanospheres that are heated to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers new opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and a new means for testing non-equilibrium thermodynamicsComment: 5 pages, 4 figures, supplementary material available upon reques

    Rossby Wave Propagation into the Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed

    Get PDF
    Sudden stratospheric warming (SSW) events are to a dominant part induced by upward propagating planetary waves. While theory predicts that the zonal phase speed of a tropospheric wave forcing affects wave propagation into the stratosphere, its relevance for SSW events has so far not been considered. This study shows in a linear wave diagnostic and in reanalysis data that phase speeds tend eastward as waves propagate upward, indicating that the stratosphere preselects eastward phase speeds for propagation, especially for zonal wave number 2. This also affects SSW events: Split SSW events tend to be preceded by anomalously eastward zonal phase speeds. Zonal phase speed may indeed explain part of the increased wave flux observed during the preconditioning of SSW events, as, for example, for the record 2009 SSW event
    corecore