105 research outputs found

    Suomen rannikon vedenkorkeusmuutokset ja niiden yhteys sääoloihin

    Get PDF
    Changes in sea level behaviour on the Finnish coast of the Baltic Sea were studied, based on observations from the early 20th century to the present. The relationship of sea level changes to changes in atmospheric factors geostrophic wind and air pressure was also studied. Wind and air pressure are the main factors affecting the short-term behaviour of sea level in the Baltic Sea. Monthly mean sea levels on the Finnish coast correlate with the monthly mean zonal geostrophic wind over the Baltic Sea. The correlation explains 82 88% of the inter-annual sea level variability, and 76 81% of the intra-annual month-to-month variability. The supposed mechanism behind this involves changes in the total water volume of the Baltic Sea due to water transport through the Danish Straits, as well as the internal redistribution of water volume in the Baltic Sea basin; both processes are controlled by atmospheric factors. The seasonal sea level behaviour on the Finnish coast has changed during recent decades. In 1970 1989 sea levels were higher than previously in November December, while in 1990 2009 sea levels were higher than previously in January March. The observed annual sea level maxima have increased by 15 30 cm from the 1930s to the present. The probabilities of other higher sea levels, those exceeded a few weeks/year or less, have also increased. The increase is most evident in wintertime (January March). Part of the observed changes is related to changes in monthly mean atmospheric conditions. Mean sea levels on the Finnish coast had a declining net (apparent) trend of 1.0 7.2 mm/yr during the 20th century, mainly due to postglacial land uplift, which was partly balanced by the external large-scale sea level rise, and by an increase in the zonal wind. The large-scale sea level rise due to ocean density and circulation changes, as well as to the melting of land-based ice sheets, glaciers and ice caps, had a global average rate of 1.7 mm/yr, but the local contribution is at present uncertain. The zonal wind contributed an increasing trend of 0.5 1.2 mm/yr in sea levels on the Finnish coast. Since the 1980s, the mean sea level trends have accelerated, i.e. the decline has slowed. In the 1980s 1990s, this was due to changes in regional wind conditions. Since the 1990s, the trends still show an acceleration that is not related to regional wind conditions. A synthesis of published global sea level scenarios, and geostrophic wind scenarios from nine global circulation models, were utilized to estimate future sea level changes. On average, the changes in wind conditions will result in 6 7 cm higher sea levels on the Finnish coast by the end of this century compared to those in the present climate. The large-scale sea level rise would alone contribute 24 126 cm of sea level rise on the Finnish coast over the period 2000 2100. These changes were combined with a 41 99 cm decline due to land uplift. The accelerated sea level rise is expected to be stronger than land uplift in the Gulf of Finland, where rising relative sea levels will result. In the Gulf of Bothnia, the stronger land uplift will still balance the sea level rise, according to the average scenario. The uncertainties are large, and high-end scenarios project rising sea levels everywhere on the Finnish coast.Meriveden korkeutta on säännöllisesti mitattu Suomen rannikolla 1800-luvun puolestavälistä alkaen. Tässä työssä tarkastellaan vedenkorkeuden käyttäytymisessä havaittuja muutoksia sekä tuuli- ja ilmanpaineolojen vaikutusta niihin. Tuuli ja ilmapaine ovat tärkeimmät Itämeren vedenkorkeusvaihteluita säätelevät tekijät. Työssä osoitettiin että n. 80 % Suomen rannikon vedenkorkeuden kuukausikeskiarvojen vaihtelusta liittyy tuuli- ja ilmanpaineoloihin. Taustalla vaikuttaa pääasiassa kaksi mekanismia. Tuulet ja ilmanpainevaihtelut painavat vettä Tanskan salmien kautta Pohjanmereltä Itämerelle ja muuttavat näin Itämeren kokonaisvesimäärää. Ne myös kallistavat vedenpintaa Itämeren eri osien välillä. Vedenkorkeuden vuodenaikaiskäyttäytyminen on muuttunut viime vuosikymmeninä. Vuosina 1970 1989 marras-joulukuun vedenkorkeudet olivat keskimäärin korkeampia kuin vuosisadan alkupuolella. Toisaalta vuosina 1990 2009 tammi-maaliskuun vedenkorkeudet olivat keskimäärin aiempaa korkeampia. Korkeat vedenkorkeudet ovat kasvaneet erityisesti talviaikaan, tammi-maaliskuussa, sitä enemmän mitä harvinaisemmista arvoista on kyse. Vuosittain mitatut maksimivedenkorkeudet ovat kasvaneet 15 30 cm 1930-luvulta nykypäivään. Osa näistä muutoksista liittyy länsituulisuuden muutoksiin Itämeren alueella. Keskimääräinen vedenkorkeus laski Suomen rannikolla maan suhteen 10 72 cm 1900-luvun aikana. Lasku johtui pääasiassa jääkauden jälkeisestä maankohoamisesta, jonka nopeus vaihtelee eri osissa rannikkoa. Maankohoamisen vaikutusta hidasti maailmanlaajuinen merenpinnan nousu, joka aiheutuu mm. valtamerien lämpölaajenemisesta sekä mannerjäätiköiden ja pienempien jäätiköiden sulamisesta. Valtamerien pinta nousi keskimäärin 17 cm 1900-luvulla, mutta paikallinen vaikutus Itämerellä ei ole tarkkaan tiedossa. Länsituulten voimistuminen nosti vedenkorkeutta Suomen rannikolla 5 12 cm, vaikkakaan nousu ei ole ollut tasaista vaan muutoksen suunta on vaihdellut vuosikymmenestä toiseen. Skenaariot keskimääräiselle vedenkorkeudelle vuodelle 2100 laskettiin yhdistelmänä kirjallisuudessa julkaistuista valtameren pinnannousun skenaarioista, tuuliolojen vaikutuksesta ilmastomallien pohjalta, sekä maankohoamisesta. Tuuliolojen muutokset johtavat keskimäärin 6 7 cm nykyistä korkeampiin vedenkorkeuksiin Suomen rannikolla. Maailmanlaajuinen merenpinnan nousu nostaa Suomen rannikon vedenkorkeuksia 24 126 cm. Maankohoaminen puolestaan aiheuttaa 41 99 cm laskun. Suomenlahdella kiihtyvän merenpinnan nousun odotetaan olevan maankohoamista voimakkaampaa, ja vedenkorkeus rannikoilla tulisi siis nousemaan. Pohjanlahdella voimakkaampi maankohoaminen riittää vielä voittamaan keskiskenaarion mukaisen merenpinnan nousun. Skenaarioissa on kuitenkin isoja epävarmuuksia, ja korkeimmat skenaariot ennustavatkin keskimääräisen vedenkorkeuden nousua kaikkialla Suomen rannikolla

    Saliva and Serum Immune Responses in Apical Periodontitis

    Get PDF
    Apical periodontitis is an inflammatory reaction at the apex of an infected tooth. Its microbiota resembles that of marginal periodontitis and may induce local and systemic antibodies binding to bacteria- and host-derived epitopes. Our aim was to investigate the features of the adaptive immune response in apical periodontitis. The present Parogene cohort (n = 453) comprises patients with cardiac symptoms. Clinical and radiographic oral examination was performed to diagnose apical and marginal periodontitis. A three-category endodontic lesion score was designed. Antibodies binding to the bacteria- and host-derived epitopes were determined from saliva and serum, and bacterial compositions were examined from saliva and subgingival samples. The significant ORs (95% CI) for the highest endodontic scores were observed for saliva IgA and IgG to bacterial antigens (2.90 (1.01–8.33) and 4.91 (2.48–9.71)/log10 unit), saliva cross-reacting IgG (2.10 (1.48–2.97)), serum IgG to bacterial antigens (4.66 (1.22–10.1)), and Gram-negative subgingival species (1.98 (1.16–3.37)). In a subgroup without marginal periodontitis, only saliva IgG against bacterial antigens associated with untreated apical periodontitis (4.77 (1.05–21.7)). Apical periodontitis associates with versatile adaptive immune responses against both bacterial- and host-derived epitopes independently of marginal periodontitis. Saliva immunoglobulins could be useful biomarkers of oral infections including apical periodontitis—a putative risk factor for systemic diseases

    ESTRO ACROP and SIOPE recommendations for myeloablative total body irradiation in children

    Get PDF
    Background and purpose: Myeloablative Total Body Irradiation (TBI) is an important modality in conditioning for allogeneic hematopoietic stem cell transplantation (HSCT), especially in children with high-risk acute lymphoblastic leukemia (ALL). TBI practices are heterogeneous and institution-specific. Since TBI is associated with multiple late adverse effects, recommendations may help to standardize practices and improve the outcome versus toxicity ratio for children. Material and methods: The European Society for Paediatric Oncology (SIOPE) Radiotherapy TBI Working Group together with ESTRO experts conducted a literature search and evaluation regarding myeloablative TBI techniques and toxicities in children. Findings were discussed in bimonthly virtual meetings and consensus recommendations were established. Results: Myeloablative TBI in HSCT conditioning is mostly performed for high-risk ALL patients or patients with recurring hematologic malignancies. TBI is discouraged in children <3–4 years old because of increased toxicity risk. Publications regarding TBI are mostly retrospective studies with level III–IV evidence. Preferential TBI dose in children is 12–14.4 Gy in 1.6–2 Gy fractions b.i.d. Dose reduction should be considered for the lungs to <8 Gy, for the kidneys to ≤10 Gy, and for the lenses to <12 Gy, for dose rates ≥6 cGy/min. Highly conformal techniques i.e. TomoTherapy and VMAT TBI or Total Marrow (and/or Lymphoid) Irradiation as implemented in several centers, improve dose homogeneity and organ sparing, and should be evaluated in studies. Conclusions: These ESTRO ACROP SIOPE recommendations provide expert consensus for conventional and highly conformal myeloablative TBI in children, as well as a supporting literature overview of TBI techniques and toxicities
    corecore