67 research outputs found

    Putative Nitrogen-Fixing Bacteria Associated With the Rhizosphere and Root Endosphere of Wheat Plants Grown in an Andisol From Southern Chile

    Get PDF
    Acidic ash derived volcanic soils (Andisols) support 50% of cereal production in Chile. Nitrogen (N) is essential for cereal crops and commonly added as urea with consequent environmental concerns due to leaching. Despite the relevance of N to plant growth, few studies have focused on understanding the application, management and ecological role of N2-fixing bacterial populations as tool for improve the N nutrition of cereal crops in Chile. It is known that N2-fixing bacteria commonly inhabits diverse plant compartments (e.g., rhizosphere and root endosphere) where they can supply N for plant growth. Here, we used culture-independent and dependent approaches to characterize and compare the putative N2-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an Andisol from southern Chile. Our results showed significantly greater bacterial loads in the rhizosphere than the root endosphere. Quantitative PCR results indicated that the copy number of the 16S rRNA gene ranged from 1012~1013 and 107~108 g−1 sample in rhizosphere and root endosphere, respectively. The nifH gene copy number ranged from 105~106 and 105 g−1 sample in rhizosphere and root endosphere, respectively. The total culturable bacteria number ranged from 109~1010 and 107~108 CFU g−1 sample in rhizosphere and 104~105 and 104 CFU g−1 sample in root endosphere using LB and NM-1 media, respectively. Indirect counts of putative N2-fixing bacteria were 103 and 102~103 CFU g−1 sample in rhizosphere and root endosphere using NFb medium, respectively. Sequencing of 16S rRNA genes from randomly selected putative N2-fixing bacteria revealed the presence of members of Proteobacteria (Bosea and Roseomonas), Actinobacteria (Georgenia, Mycobacterium, Microbacterium, Leifsonia, and Arthrobacter), Bacteroidetes (Chitinophaga) and Firmicutes (Bacillus and Psychrobacillus) taxa. Differences in 16S rRNA and putative nifH-containing bacterial communities between rhizosphere and root endosphere were shown by denaturing gradient gel electrophoresis (DGGE). This study shows a compartmentalization between rhizosphere and root endosphere for both the abundance and diversity of total (16S rRNA) and putative N2-fixing bacterial communities on wheat plants grown in Chilean Andisols. This information can be relevant for the design and application of agronomic strategies to enhance sustainable N-utilization in cereal crops in Chile

    Understanding the strategies to overcome phosphorus-deficiency and aluminum toxicity by ryegrass endophytic and rhizosphere phosphobacteria

    Get PDF
    Phosphobacteria, secreting organic acids and phosphatases, usually favor plant performance in acidic soils by increasing phosphorus (P) availability and aluminum (Al) complexing. However, it is not well-known how P-deficiency and Al-toxicity affect the phosphobacteria physiology. Since P and Al problems often co-occur in acidic soils, we have therefore proposed the evaluation of the single and combined effects of P-deficiency and Al-toxicity on growth, organic acids secretion, malate dehydrogenase (mdh) gene expression, and phosphatase activity of five Al-tolerant phosphobacteria previously isolated from ryegrass. These phosphobacteria were identified as Klebsiella sp. RC3, Stenotrophomona sp. RC5, Klebsiella sp. RCJ4, Serratia sp. RCJ6, and Enterobacter sp. RJAL6. The strains were cultivated in mineral media modified to obtain (i) high P in absence of Al-toxicity, (ii) high P in presence of Al-toxicity, (iii) low P in absence of Al-toxicity, and (iv) low P in presence of Al-toxicity. High and low P were obtained by adding KH2PO4 at final concentration of 1.4 and 0.05 mM, respectively. To avoid Al precipitation, AlCl3 × 6H2O was previously complexed to citric acid (sole carbon source) in concentrations of 10 mM. The secreted organic acids were identified and quantified by HPLC, relative mdh gene expression was determined by qRT-PCR and phosphatase activity was colorimetrically determined using p-nitrophenyl phosphate as substrate. Our results revealed that although a higher secretion of all organic acids was achieved under P-deficiency, the patterns of organic acids secretion were variable and dependent on treatment and strain. The organic acid secretion is exacerbated when Al was added into media, particularly in the form of malic and citric acid. The mdh gene expression was significantly up-regulated by the strains RC3, RC5, and RCJ6 under P-deficiency and Al-toxicity. In general, Al-tolerant phosphobacteria under P deficiency increased both acid and alkaline phosphatase activity with respect to the control, which was deepened when Al was present. The knowledge of this bacterial behavior in vitro is important to understand and predict the behavior of phosphobacteria in vivo. This knowledge is essential to generate smart and efficient biofertilizers, based in Al-tolerant phosphobacteria which could be expansively used in acidic soil

    Copper immobilization by biochar and microbial community abundance in metal-contaminated soils

    Get PDF
    Biochar (BC) is gaining attention as a soil amendment that can remediate metal polluted soils. The simultaneous effects of BC on copper (Cu) mobility, microbial activities in soil using metallophytes have scarcely been addressed. The objective of this study was to evaluate the effects of biochar BCs on Cu immobilization and over soil microbial communities in a Cu-contaminated soil evaluated over a two-year trial. A Cu-contaminated soil (338 mg kg(-1)) was incubated with chicken manure biochar (CMB) or oat hull biochar (OHB) at rates of 1 and 5% w/w. Metallophyte Oenothera picensis was grown over one season (six months). The above process was repeated for 3 more consecutive seasons using the same soils. The BCs increased the soil pH and decreased the Cu exchangeable fraction Cu by 5 and 10 times (for OHB and CMB, respectively) by increasing the Cu bound in organic matter and residual fractions, and its effects were consistent across all seasons evaluated. BCs provided favorable habitat for microorganisms that was evident in increased microbial activity. The DHA activity was increased in all BC treatments, reaching a maximum of 7 and 6 times higher than control soils in CMB and OHB. Similar results were observed in microbial respiration, which increased 53% in OHB and 61% in CMB with respect to control. The BCs produced changes in microbial communities in all seasons evaluated. The fungal and bacterial richness were increased by CMB and OHB treatments; however, no clear effects were observed in the microbial diversity estimators. The physiochemical and microbiological effects produced by BC result in an increase of plant biomass production, which was on average 3 times higher than control treatments. However, despite being a metallophyte, O. picensis did not uptake Cu efficiently. Root and shoot Cu concentrations decreased or changed insignificantly in most BC treatments. Crown Copyright (c) 2017 Published by Elsevier B.V. All rights reserve

    Responses of Microbiological Soil Properties to Intercropping at Different Planting Densities in an Acidic Andisol

    Get PDF
    © 2020 by the authors.Intercropping could increase the capacity of crops to use soil resources. The aim of this study was to investigate the effects of lupin/wheat intercropping on soil properties, grain yield and nutrient uptake at different plant densities. Lupin and wheat were grown under field conditions as monocrops and intercrops. Soil nutrient availability and relative abundance of functional genes (acdS, phoD, phoC and nifH) were evaluated. The results obtained indicate that the cropping system had a significant effect (p < 0.001) on N and P availability. Lupin monocrop led to significantly higher N availability compared to intercrop. Intercropping resulted in significantly lower Olsen-P and K in soil concentrations compared to monocropping. No significant differences were observed in enzyme activity, except for phosphatase, which was 152% greater in the treatments at high plant density. Foliar nutrients were significantly higher in intercropping compared to monocropping. Acid phosphatase gene phoC was more abundant than the alkaline phosphatase gene phoD, which plays a more relevant role in acidic Andisols. The results confirm that N and P mobilization can improve nutrient absorption on wheat. When intercropped, lupin had positive effects on wheat due to its P mobilization capacity, while no effects were observed on lupin.Peer reviewe

    Diversity, Interaction, and Bioprospecting of Plant-Associated Microbiomes

    No full text
    Plant-associated microbiomes have been suggested as pivotal for the growth and health of natural vegetation and agronomic plants. In this sense, plant-associated microbiomes harbor a huge diversity of microorganisms (such as bacteria and fungi) which can modulate the plant host response against pathogens and changing environmental conditions through a complex network of genetic, biochemical, physical, and metabolomics interactions. Advances on next-generation omic technologies have opened the possibility to unravel this complex microbial diversity and their interactive networks as never described before. In parallel, the develop of novel culture-dependent methods are also crucial to the study of the biology of members of plant-associated microbiomes and their bioprospecting as sources of bioactive compounds, or as tools to improve the productivity of agriculture. This Special Issue aims to motivate and collect recent studies which are focused on exploring the diversity and ecology of plant-associated microbiomes and their genetic and metabolic interactions with other microorganisms or their plant hosts, as well as their potential biotechnological applications in diverse fields, such as inoculants for agriculture

    Production of partially phosphorylated myo-inositol phosphates using phytases immobilised on magnetic nanoparticles

    No full text
    Phytases of different origin were covalently bound onto Fe3O4 magnetic nanoparticles (12 nm). Binding efficiencies of all three phytases were well above 70% relative to the number of aldehyde groups available on the surface of the magnetic nanoparticles. Temperature stability for all three phytases was enhanced as a consequence of immobilisation, whereas pH dependence of enzyme activity was not affected. Maximum catalytic activity of the immobilised phytases was found at 60°C (rye), 65°C (Aspergillus niger) and 70°C (Escherichia albertii). The immobilised enzymes exhibited the same excellent substrate specificities and unique myo-inositol phosphate phosphatase activities as their soluble counterparts. However, the catalytic turnover number dropped drastically for the immobilised phytases. The amount of the desired partially phosphorylated myo-inositol phosphate isomer could be easily controlled by the contact time of substrate solution and immobilised enzymes. The immobilised phytases showed a high operational stability by retaining almost full activity even after fifty uses

    Occurrence of Soil Fungi in Antarctic Pristine Environments

    Get PDF
    The presence of fungi in pristine Antarctic soils is of particular interest because of the diversity of this microbial group. However, the extreme conditions that coexist in Antarctica produce a strong selective pressure that could lead to the evolution of novel mechanisms for stress tolerance by indigenous microorganisms. For this reason, in recent years, research on cold-adapted microorganisms has increased, driven by their potential value for applications in biotechnology. Cold-adapted fungi, in particular, have become important sources for the discovery of novel bioactive secondary metabolites and enzymes. In this study, we studied the fungal community structure of 12 soil samples from Antarctic sites, including King George Island (including Collins Glacier), Deception Island and Robert Island. Culturable fungi were isolated and described according to their morphological and phenotypical characteristics, and the richness index was compared with soil chemical properties to describe the fungal community and associated environmental parameters. We isolated 54 fungal strains belonging to the following 19 genera: Penicillium, Pseudogymnoascus, Lambertella, Cadophora, Candida, Mortierella, Oxygenales, Geomyces, Vishniacozyma, Talaromyces, Rhizopus, Antarctomyces, Cosmospora, Tetracladium, Leptosphaeria, Lecanicillium, Thelebolus, Bjerkandera and an uncultured Zygomycete. The isolated fungi were comprised of 70% Ascomycota, 10% Zygomycota, 10% Basidiomycota, 5% Deuteromycota and 5% Mucoromycota, highlighting that most strains were associated with similar genera grown in cold environments. Among the culturable strains, 55% were psychrotrophic and 45% were psychrophilic, and most were Ascomycetes occurring in their teleomorph forms. Soils from the Collins Glacier showed less species richness and greater species dominance compared with the rest of the sites, whereas samples 4, 7, and 10 (from Fildes Bay, Coppermine Peninsula and Arctowski Station, respectively) showed greater species richness and less species dominance. Species richness was related to the C/N ratio, whereas species dominance was inversely related to C and N content. Thus, the structure of the fungal community was mainly related to soil chemical parameters more than sample location and altitude

    Disinfection of seawater for hatchery aquaculture systems using electrolytic water treatment

    No full text
    Abstract A recently marketed electrolytic water treatment system (Hoshizaki) was evaluated for disinfection of seawater used in disease-prone high-intensity aquaculture systems. Bacterial plate counts (CFU), direct bacterial total counts using 4V,6V diamidino-2-phenylindole (DAPI) staining, and viable bacterial total counts using 6-carboxy fluorescein diacetate (6CFDA) showed complete inactivation of bacterial populations at an intensity of z 1.3 amp ( z 2.13 mg Cl l À 1 ). This included disinfection of seawater experimentally dosed with the known scallop pathogen Vibrio anguillarum. Experimental use of electrolysis between 1.0 and 4.0 A was able to disinfect cultures of the (food) microalga Isochrysis galbana without deleterious effects on its growth rate. When this technique was applied on a commercial scale in a scallop hatchery, higher microalgal growth rates were achieved compared to those of traditionally autoclaved seawater, or seawater treated with germicidal ultraviolet light (UV). Results suggested that disinfection of hatchery culture waters could be achieved using electrolytic release of very low levels of active Cl À ion, providing an effective and economically attractive alternative to currently used methods in these culture systems.
    • …
    corecore