71 research outputs found

    Jellyfish Impacts on Marine Aquaculture and Fisheries

    Get PDF
    Over the last 50 years there has been an increased frequency and severity of negative impacts affecting marine fishery and aquaculture sectors, which claimed significant economic losses due to the interference of stinging gelatinous organisms with daily operational activities. Nevertheless, original scientific information on jellyfish-related incidents, their consequences, and potential preventative and mitigation countermeasures is limited and scattered across gray literature, governmental technical reports, and communication media. A literature scan searching for records of any interactions between jellyfish and the marine fishery/aquaculture sectors was carried out. Out of 553 papers, 90 contained original information, referring to more than 130 cases worldwide of negative impacts of jellyfish on marine fishery/aquaculture over the last century. Calling attention on too often neglected socio-economic and ecological impacts of jellyfish blooms, the purpose of this paper is to review and analyze the most up-to-date research on this subject and to provide a global perspective on the importance of jellyfish impacts and their cascading effects on marine fishery and aquaculture sectors

    effects of global warming on reproduction and potential dispersal of mediterranean cnidarians

    Get PDF
    Water temperature directly affects life cycles, reproductive periods, and metabolism of organisms living the oceans, especially in the surface zones. Due to the ocean warming, changes in water stratification and primary productivity are affecting trophic chains in sensitive world areas, such as the Mediterranean Sea. Benthic and pelagic cnidarians exhibit complex responses to climatic conditions. For example, the structure and phenology of the Mediterranean hydrozoan community displayed marked changes in species composition, bathymetric distribution, and reproductive timing over the last decades. The regional species pool remained stable in terms of species numbers but not in terms of species identity. When the Scyphozoa group is considered, we observe that Pelagia noctiluca (among the most abundant jellyfish in the Mediterranean Sea and eastern Atlantic waters) has increasingly frequent massive outbreaks associated to warmer winters. Variations in metabolic activities, such as respiration and excretion, are strongly temperature-dependent, with direct increment of energetic costs with jellyfish size and temperature, leading to growth rate reduction. Water temperature affects sexual reproduction through changes in the energy storage and gonad development cycles. Anthozoan life cycles depend also on primary productivity and temperature: gonadal production and spawning are tightly related in shallow populations (0–30 m depth) with the spring-summer temperature trends and autumn food availability. Overall, the energy transferred from the mother colonies to the offspring may decrease, negatively affecting their potential to settle, metamorphose and feed during the first months of their lives, eventually impairing the dominance of long-living cnidarian suspension feeders in shallow benthic habitats. In this review, we describe the already ongoing effects of sea warming on several features of cnidarian reproduction, trying to elucidate how reproductive traits and potential dispersion will be affected by the cascade effects of increasing temperature in the Mediterranean Sea

    Reproductive and bloom patterns of Pelagia noctiluca in the Strait of Messina, Italy

    Get PDF
    Investigations on sexual reproduction of jellyfish are essential to understanding mechanisms and patterns of outbreaks formation. Pelagia noctiluca (Forskål, 1775) (Scyphozoa) is known as the predominant jellyfish species with direct development in Western and Central Mediterranean Sea. In this paper we used integrated morphometric, histological, and biochemical approaches to investigate the annual reproductive biology of P. noctiluca from the Strait of Messina (South Thyrrenian Sea), a key proliferation area for this species due to favourable temperatures and high productivity. From November 2011 to September 2012, P. noctiluca sexual reproduction occurred throughout the year, with two seasonal peaks (autumn, spring) of spawning and embryonic development. Gonads of female P. noctiluca were characterized by a large amount of mature eggs of small size (diameter < 200 mm) during high food availability, whereas fewer, larger eggs (diameter > 200 mm) were detected during low availability of prey. Two morphometric indexes were applied: the Gonad-Somatic Index (GSI, gonadal/somatic tissue dry weight ratio) and Fecundity Index (FI, n eggs mm2 * gonadal dry weight). The FI showed longer spawning periods than the GSI, providing a better causal-mechanistic explanation for the year-round occurrence of P. noctiluca in the Strait of Messina. Protein contents of the gonads changed seasonally, with the highest concentrations during the pre-spawning periods. We suggest that investigations on jellyfish sexual reproduction can provide biological information relevant for understanding mechanisms of jellyfish blooms as well as for the management of coastal zones affected by outbreaks of gelatinous species

    Guarding net effects on landings and discards in Mediterranean trammel net fishery: Case analysis of Egadi Islands Marine Protected Area (Central Mediterranean Sea, Italy)

    Get PDF
    Discards remain among the main negative impacts of fishing activities, and their reductions are strengthened by the European Common Fisheries Policy (European Regulation 1380/2013). Trammel net fisheries appear more sustainable compared with other fishing techniques, especially from an ecological viewpoint. Despite this, reports show that trammel net fisheries deliver discard quantities between 10% and 43% of the total catch biomass. To supplement existing information, this current work attempts to address the discard reduction using guarding net in the small-scale fisheries of Egadi Islands MPA (Western Sicily, Central Mediterranean Sea). To assess the reduction of unwanted catches, 48 experimental fishing trials were conducted within a 6-month period. The experimental fishing trial employed a trammel net made up of 20 panels alternated with two different net configurations. The control panels (CN) held a large outer (180 mm) and small inner (31.25 mm) meshes. The test panels (GN) with guarding net constituted a three-mesh-high (50-mm mesh size) net placed between trammel net panels and a lead line. A total of 3,310 individuals belonging to 106 taxa and nine phyla were caught. Crustaceans were the most abundant unwanted catches in the control panels, whereas bioconstructions occurred in the guarding net panels. The discard ratios of CN and GN panels were statistically different (t-value = -2.55; p&lt; 0.05). The analysis of catch per unit effort showed higher catches of CN panels for both commercial and discard fractions (p&lt; 0.05). Moreover, the guarding net panels caught the main discarded species at 20% lower compared with the control. The overall value of the catch at the CN panels (euro 3,366.90) was higher than the total income (euro 2,043.70) generated using the GN panels, which suggests a significant commercial loss of 40% (p&lt; 0.05)

    Guarding net effects on landings and discards in Mediterranean trammel net fishery: Case analysis of Egadi Islands Marine Protected Area (Central Mediterranean Sea, Italy)

    Get PDF
    Discards remain among the main negative impacts of fishing activities, and their reductions are strengthened by the European Common Fisheries Policy (European Regulation 1380/2013). Trammel net fisheries appear more sustainable compared with other fishing techniques, especially from an ecological viewpoint. Despite this, reports show that trammel net fisheries deliver discard quantities between 10% and 43% of the total catch biomass. To supplement existing information, this current work attempts to address the discard reduction using guarding net in the small-scale fisheries of Egadi Islands MPA (Western Sicily, Central Mediterranean Sea). To assess the reduction of unwanted catches, 48 experimental fishing trials were conducted within a 6-month period. The experimental fishing trial employed a trammel net made up of 20 panels alternated with two different net configurations. The control panels (CN) held a large outer (180&nbsp;mm) and small inner (31.25&nbsp;mm) meshes. The test panels (GN) with guarding net constituted a three-mesh-high (50-mm mesh size) net placed between trammel net panels and a lead line. A total of 3,310 individuals belonging to 106 taxa and nine phyla were caught. Crustaceans were the most abundant unwanted catches in the control panels, whereas bioconstructions occurred in the guarding net panels. The discard ratios of CN and GN panels were statistically different (t-value = –2.55; p&lt; 0.05). The analysis of catch per unit effort showed higher catches of CN panels for both commercial and discard fractions (p&lt; 0.05). Moreover, the guarding net panels caught the main discarded species at 20% lower compared with the control. The overall value of the catch at the CN panels (€ 3,366.90) was higher than the total income (€ 2,043.70) generated using the GN panels, which suggests a significant commercial loss of 40% (p&lt; 0.05)

    Meiofaunal diversityand nematode assemblages in two submarine caves of a mediterranean marine protected area

    Get PDF
    Submarine caves are environments of great ecological interest because of the occurrence of peculiar conditions, such as the attenuation of light and reduced water turnover, which can determine oligotrophic conditions from the entrance to the interior part of the cave. These environmental gradients may influence the distribution of the communities inhabiting submarine caves. In this study we investigated the meiofaunal community and nematode assemblages from the sediments inside and outside two submarine caves in Ustica Island Marine Protected Area (southwest Italy): Grotta Falconiera and Grotta dei Gamberi. Consistently with a general pattern of distribution reported by several studies on benthic organisms, our results showed a decrease in the abundance and changes in the taxa composition of the meiofaunal community along the exterior-interior axis of the caves, also highlighting the dissimilarity between the dark and semi-dark communities. We found a significant influence of the availability of organic matter (i.e. phytopigment concentrations) on the distribution and composition of both the meiofauna and the nematode community inside the caves. Different nematode assemblages characterized the inside and the outside of the two caves, with species occurring exclusively in the sediment of both caves, particularly in the dark portions, and completely absent in the external sediments. Environmental features of submarine caves may affect food resources inside the caves and consequently trophic nematode assemblages. Our results showed a difference in feeding strategies between nematodes inhabiting the caves and those living outside, suggesting that in the two caves investigated, bacteria might represent the most important food source for nematodes

    Biochemical characterization of cassiopea andromeda (Forssk\ue5l, 1775), another red sea jellyfish in the western mediterranean sea

    Get PDF
    Increasing frequency of native jellyfish proliferations and massive appearance of non-indigenous jellyfish species recently concur to impact Mediterranean coastal ecosystems and human activities at sea. Nonetheless, jellyfish biomass may represent an exploitable novel resource to coastal communities, with reference to its potential use in the pharmaceutical, nutritional, and nutraceutical Blue Growth sectors. The zooxanthellate jellyfish Cassiopea andromeda, Forssk\ue5l, 1775 (Cnidaria, Rhizostomeae) entered the Levant Sea through the Suez Canal and spread towards the Western Mediterranean to reach Malta, Tunisia, and recently also the Italian coasts. Here we report on the biochemical characterization and antioxidant activity of C. andromeda specimens with a discussion on their relative biological activities. The biochemical characterization of the aqueous (PBS) and hydroalcoholic (80% ethanol) soluble components of C. andromeda were performed for whole jellyfish, as well as separately for umbrella and oral arms. The insoluble components were hydrolyzed by sequential enzymatic digestion with pepsin and collagenase. The composition and antioxidant activity of the insoluble and enzymatically digestible fractions were not affected by the pre-extraction types, resulting into collagen-and non-collagen-derived peptides with antioxidant activity. Both soluble compounds and hydrolyzed fractions were characterized for the content of proteins, phenolic compounds, and lipids. The presence of compounds coming from the endosymbiont zooxanthellae was also detected. The notable yield and the considerable antioxidant activity detected make this species worthy of further study for its potential biotechnological sustainable exploitation

    Identifying Persistent Hot Spot Areas of Undersized Fish and Crustaceans in Southern European Waters: Implication for Fishery Management Under the Discard Ban Regulation

    Get PDF
    The recent establishment of the “landing obligation” under the reformed EU Common Fishery Policy has the twofold objective of reducing the excessive practice of discarding unwanted catch at sea and encouraging more selective and sustainable fisheries. Within this context, the awareness of the spatial distribution of potential unwanted catches is important for devising management measures aimed to decrease discards. This study analyzed the distribution of Hot Spot density areas of demersal fish and crustaceans below the Minimum Conservation Reference Size (MCRS) in four different southern European seas: continental Portuguese coast, Catalan Sea, South of Sicily, Liguria and northern Tyrrhenian Seas using both bottom trawl survey data and information on the spatial distribution of commercial fisheries. Critical areas for discarding were identified as zones where the highest densities of individuals below MCRS were consistently recorded throughout a series of years. Results clearly showed a patchy distribution of undersized individuals in each investigated area, highlighting the overlap between high density patches of both discards and fishing effort. The present findings provide a relevant knowledge for supporting the application of spatial-based management actions, such as the designation of Fisheries Restricted Areas (FRAs), in order to minimize the by-catch of undersized specimens and improve the sustainability of demersal fisheries

    Changes of energy fluxes in marine animal forests of the anthropocene: Factors shaping the future seascape

    Get PDF
    Climate change is already transforming the seascapes of our oceans by changing the energy availability and the metabolic rates of the organisms. Among the ecosystem-engineering species that structure the seascape, marine animal forests (MAFs) are the most widespread. These habitats, mainly composed of suspension feeding organisms, provide structural complexity to the sea floor, analogous to terrestrial forests. Because primary and secondary productivity is responding to different impacts, in particular to the rapid ongoing environmental changes driven by climate change, this paper presents some directions about what could happen to different MAFs depending on these fast changes. Climate change could modify the resistance or resilience of MAFs, potentially making them more sensitive to impacts from anthropic activities (i.e. fisheries and coastal management), and vice versa, direct impacts may amplify climate change constraints in MAFs. Such changes will have knock-on effects on the energy budgets of active and passive suspension feeding organisms, as well as on their phenology, larval nutritional condition, and population viability. How the future seascape will be shaped by the new energy fluxes is a crucial question that has to be urgently addressed to mitigate and adapt to the diverse impacts on natural systems

    Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis

    Get PDF
    Sporadic inclusion body myositis (sIBM) is one of the most common myopathies in elderly people. Mitochondrial abnormalities at the histological level are present in these patients. We hypothesize that mitochondrial dysfunction may play a role in disease aetiology. We took the following measurements of muscle and peripheral blood mononuclear cells (PBMCs) from 30 sIBM patients and 38 age-and gender-paired controls: mitochondrial DNA (mtDNA) deletions, amount of mtDNA and mtRNA, mitochondrial protein synthesis, mitochondrial respiratory chain (MRC) complex I and IV enzymatic activity, mitochondrial mass, oxidative stress and mitochondrial dynamics (mitofusin 2 and optic atrophy 1 levels). Depletion of mtDNA was present in muscle from sIBM patients and PBMCs showed deregulated expression of mitochondrial proteins in oxidative phosphorylation. MRC complex IV/citrate synthase activity was significantly decreased in both tissues and mitochondrial dynamics were affected in muscle. Depletion of mtDNA was significantly more severe in patients with mtDNA deletions, which also presented deregulation of mitochondrial fusion proteins. Imbalance in mitochondrial dynamics in muscle was associated with increased mitochondrial genetic disturbances (both depletion and deletions), demonstrating that proper mitochondrial turnover is essential for mitochondrial homoeostasis and muscle function in these patients
    corecore