283 research outputs found

    Застосування мінімаксного підходу для сегмениації судин сітківки

    Get PDF
    The paper presents the results of work neural network for segmentation of the fundus vessels using the Tensorflow machine learning library. Training and testing takes place on the public DRIVE data set. The results of work model, namely the recognized blood vessels are presented.When considering binary cross-entropy as an indicator of efficiency, which is demonstrated in the article, it was determined that the U-Net model with 8x8 tiles is a solution to the problem of minimax ML. In the first step, the value of the loss function is compared for all considered models. In the second step, it is determined that the value of binary cross-entropy for the U-Net model with 8x8 tiles will be the minimum among the maximum characteristics.When considering training time as an indicator of efficiency, as shown in the relevant table, the U-Net model with 25x25 tiles is a solution to the minimax ML problem. In the first step, we first compare the values of the training time of all the models under consideration. In the second step, it is determined that the time value for the U-Net model with 25x25 tiles will be the minimum among the maximum values.У роботі представлені результати роботи нейронної мережі для сегментації судин очного дна з використанням бібліотеки машинного навчання Tensorflow. Навчання і тестування відбувається на загальнодоступному наборі даних DRIVE. Результати роботи моделі, а саме розпізнані кровоносні судини є представлені.При розгляді бінарної крос-ентропії як показника ефективності, що є продемонстровано у статті, визначено, що модель U-Net з плитками 8x8 є рішенням проблеми minimax ML. На першому кроці, відбувається порівняння значення функції втрат для всіх розглянутих моделей. На другому кроці визначено, що значення бінарної крос-ентропії для моделі U-Net з плитками 8x8 буде мінімальним серед максимальних характеристик. При розгляді часу навчання як показником ефективності, що продемонстровано у відповідній таблиці, модель U-Net з плитками 25x25 є рішенням проблеми minimax ML. На першому кроці, спочатку відбувається порівняння значення часу тренування всіх моделей, що розглядаються. На другому кроці визначено, що значення часу для моделі U-Net з плитками 25x25 буде мінімальним серед максимальних показників.Ключові слова: сегментація судин сітківки, нейронна мережа, машинне навчання, мінімаксний підхід, бібліотека машинного навчання.

    Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Get PDF
    Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U) in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR) and two Pebble-Bed Accelerator Driven Systems (ADSs) was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.Received: 09 February 2015; Revised: 12 May 2015; Accepted: 20 May 201

    Assessment of and Response to Data Needs of Clinical and Translational Science Researchers and Beyond

    Get PDF
    Objective and Setting: As universities and libraries grapple with data management and “big data,” the need for data management solutions across disciplines is particularly relevant in clinical and translational science (CTS) research, which is designed to traverse disciplinary and institutional boundaries. At the University of Florida Health Science Center Library, a team of librarians undertook an assessment of the research data management needs of CTS researchers, including an online assessment and follow-up one-on-one interviews. Design and Methods: The 20-question online assessment was distributed to all investigators affiliated with UF’s Clinical and Translational Science Institute (CTSI) and 59 investigators responded. Follow-up in-depth interviews were conducted with nine faculty and staff members. Results: Results indicate that UF’s CTS researchers have diverse data management needs that are often specific to their discipline or current research project and span the data lifecycle. A common theme in responses was the need for consistent data management training, particularly for graduate students; this led to localized training within the Health Science Center and CTSI, as well as campus-wide training. Another campus-wide outcome was the creation of an action-oriented Data Management/Curation Task Force, led by the libraries and with participation from Research Computing and the Office of Research. Conclusions: Initiating conversations with affected stakeholders and campus leadership about best practices in data management and implications for institutional policy shows the library’s proactive leadership and furthers our goal to provide concrete guidance to our users in this area

    Laser-assisted guiding of electric discharges around objects

    Get PDF
    Electric breakdown in air occurs for electric fields exceeding 34 kV/cm and results in a large current surge that propagates along unpredictable trajectories. Guiding such currents across specific paths in a controllable manner could allow protection against lightning strikes and high-voltage capacitor discharges. Such capabilities can be used for delivering charge to specific targets, for electronic jamming, or for applications associated with electric welding and machining. We show that judiciously shaped laser radiation can be effectively used to manipulate the discharge along a complex path and to produce electric discharges that unfold along a predefined trajectory. Remarkably, such laser-induced arcing can even circumvent an object that completely occludes the line of sight

    Robust three-dimensional high-order solitons and breathers in driven dissipative systems: a Kerr cavity realization

    Full text link
    We present a general approach to excite robust dissipative three-dimensional and high-order solitons and breathers in passively driven nonlinear cavities. Our findings are illustrated in the paradigmatic example provided by an optical Kerr cavity with diffraction and anomalous dispersion, with the addition of an attractive three-dimensional parabolic potential. The potential breaks the translational symmetry along all directions, and impacts the system in a qualitatively unexpected manner: three-dimensional solitons, or light-bullets, are the only existing and stable states for a given set of parameters. This property is extremely rare, if not unknown, in passive nonlinear physical systems. As a result, the excitation of the cavity with any input field leads to the deterministic formation of a target soliton or breather, with a spatiotemporal profile that unambiguously corresponds to the given cavity and pumping conditions. In addition, the tuning of the potential width along the temporal direction results in the existence of a plethora of stable asymmetric solitons. Our results may provide a solid route towards the observation of dissipative light bullets and three-dimensional breathers
    corecore