281 research outputs found
Interactions of the drug amphotericin B with phospholipid membranes containing or not ergosterol: new insight into the role of ergosterol
AbstractAmphotericin B (AmB) is an amphipathic polyene antibiotic which permeabilizes ergosterol-containing membranes, supposedly by formation of pores. In water, AmB forms chiral aggregates, modelled as stacks of planar dimers in which the joined polyene chains in each dimer turn round, from one dimer to the following in these stacks, by forming a helical array. Studies of the binding of AmB with L-dipalmitoylphosphatidylcholine (L-DPPC) and L-dilauroylphosphatidylcholine (L-DLPC) bilayers disclose the main following results. (1) An inversion of the helicity of the L-DPPC-bound AmB aggregates, when the L-DPPC bilayers are in the gel phase, is inferred from the evolution of the circular dichroism spectra of AmB+L-DPPC mixtures. (2) An AmB-induced gel-to-subgel transformation of L-DPPC bilayers, in the previous mixtures, is revealed by a differential scanning calorimetry study. (3) The role played by ergosterol in the location of phospholipid-bound AmB aggregates with respect to a phospholipid bilayer is directly demonstrated from atomic force microscopy observations of mica-supported AmB+L-DLPC mixtures, in the presence or absence of ergosterol. While in the absence of ergosterol AmB aggregates remained at the surface of the bilayer, in the presence of ergosterol they appeared embedded within this bilayer and became hollow-centered. As such an embedding in the hydrophobic core of a bilayer requires a rearrangement of the aggregates with respect to their architecture in water, this rearrangement is held responsible for the hollowing of aggregates. The hollow-centered sublayer-embedded AmB aggregates are thought to be the precursors of the formation of AmB pores
Recommended from our members
S-Acyl Thioctic Acid Derivatives in Aerobacter Aerogenes andScenedesmus
1. Acetyl thioctic acid has been prepared chemically and i t s chromatographic and acetylating behavior i s described. 2. A C{sup 14} -containing substance has been found in Scenedesmus, photosynthesizing in the presence of a-C{sup 14}-pyruvate, which has properties suggesting that it i s acetyl thioctic acid. 3 . A C{sup 14}-containing substance has been found in Aerobacter aerogenes, metabolizing a-C{sup 14}-pyruvate, which shows the properties of a labile conjugate of thioctic acid with some relatively polar groups. 4. Acetyl thioctic acid i s formed in vitro when light acts on a solution of thioctic acid and pyruvate
Recommended from our members
Synthesis and Metabolism of Carbonyl-C14 Pyruvic andHydroxypyruvic Acids in Algae
1. Pyruvic and hydroxypyruvic acids a r e metabolized by Scenedesmus. 2. The products of metabolism of pyruvic -2 -C{sup 14} and hydroxypyruvic-2 -C{sup 14} acids a r e essentially identical to those of C{sup 14}-O fixations. 3. Lipids a r e rapidly formed i n the light from both substrates. In the dark the major products a r e intermediates of the tricarboxylic acid cycle. 4. Zt does not appear likely that f r e e hydroxypyruvic acid is a photosynthetic intermediate, 5 . Tricarboxylic acid cycle intermediates a r e formed from exogenous pyruvate a s fast in the light a s in the dark
Recommended from our members
Self-assembly of the anti-fungal polyene amphotericin B into giant helically-twisted nanotapes
The amphiphilic polyene amphotericin B, a powerful treatment for systemic fungal infections, is shown to exhibit a critical aggregation concentration, and to form giant helically-twisted nanostructures via self-assembly in basic aqueous solution
Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression
A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21–q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of ∼20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes
Fructan and its relationship to abiotic stress tolerance in plants
Numerous studies have been published that attempted to correlate fructan concentrations with freezing and drought tolerance. Studies investigating the effect of fructan on liposomes indicated that a direct interaction between membranes and fructan was possible. This new area of research began to move fructan and its association with stress beyond mere correlation by confirming that fructan has the capacity to stabilize membranes during drying by inserting at least part of the polysaccharide into the lipid headgroup region of the membrane. This helps prevent leakage when water is removed from the system either during freezing or drought. When plants were transformed with the ability to synthesize fructan, a concomitant increase in drought and/or freezing tolerance was confirmed. These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation
- …