12,296 research outputs found

    The optical and near-infrared properties of nearby groups of galaxies

    Full text link
    We present a study of the optical (BRI) and near-infrared (JHK) luminosity fuctions (LFs) of the GEMS sample of 60 nearby groups of galaxies between 0<z<0.04, with our optical CCD photometry and near-IR photometry from the 2MASS survey. The LFs in all filters show a depletion of galaxies of intermediate luminosity, two magnitudes fainter than L*, within 0.3 R{500} from the centres of X-ray faint groups. This feature is not as pronounced in X-ray bright gropus, and vanishes when LFs are found out to R{500}, even in the X-ray dim groups. We argue that this feature arises due to the enhanced merging of intermediate-mass galaxies in the dynamically sluggish environment of low velocity-dispersion groups, indicating that merging is important in galaxy evolution even at z~0.Comment: to appear in the proceedings of the ESO workshop "Groups of Galaxies in the Nearby Universe", Santiago, Dec 5-9, 2005. Eds. I. Saviane, V. Ivanov, & J. Borissova (Springer Verlag); 5 page

    Evaluating the impact of an enhanced energy performance standard on load-bearing masonry domestic construction: Understanding the gap between designed and real performance: lessons from Stamford Brook.

    Get PDF
    This report is aimed at those with interests in the procurement, design and construction of new dwellings both now and in the coming years as the Government’s increasingly stringent targets for low and zero carbon housing approach. It conveys the results of a research project, carried out between 2001 and 2008, that was designed to evaluate the extent to which low carbon housing standards can be achieved in the context of a large commercial housing development. The research was led by Leeds Metropolitan University in collaboration with University College London and was based on the Stamford Brook development in Altrincham, Cheshire. The project partners were the National Trust, Redrow and Taylor Wimpey and some 60 percent of the planned 700 dwelling development has been completed up to June 2008. As the UK house building industry and its suppliers grapple with the challenges of achieving zero carbon housing by 2016, the lessons arising from this project are timely and of considerable value. Stamford Brook has demonstrated that designing masonry dwellings to achieve an enhanced energy standard is feasible and that a number of innovative approaches, particularly in the area of airtightness, can be successful. The dwellings, as built, exceed the Building Regulations requirements in force at the time but tests on the completed dwellings and longer term monitoring of performance has shown that, overall, energy consumption and carbon emissions, under standard occupancy, are around 20 to 25 percent higher than design predictions. In the case of heat loss, the discrepancy can be much higher. The report contains much evidence of considerable potential but points out that realising the design potential requires a fundamental reappraisal of processes within the industry from design and construction to the relationship with its supply chain and the development of the workforce. The researchers conclude that, even when builders try hard, current mainstream technical and organisational practices together with industry cultures present barriers to consistent delivery of low and zero carbon performance. They suggest that the underlying reasons for this are deeply embedded at all levels of the house building industry. They point out also that without fundamental change in processes and cultures, technological innovations, whether they be based on traditional construction or modern methods are unlikely to reach their full potential. The report sets out a series of wide ranging implications for new housing in the UK, which are given in Chapter 14 and concludes by firmly declaring that cooperation between government, developers, supply chains, educators and researchers will be crucial to improvement. The recommendations in this report are already being put into practice by the researchers at Leeds Metropolitan University and University College London in their teaching and in further research projects. The implications of the work have been discussed across the industry at a series of workshops undertaken in 2008 as part of the LowCarb4Real project (see http://www.leedsmet.ac.uk/as/cebe/projects/lowcarb4real/index.htm). In addition, the learning is having an impact on the work of the developers (Redrow and Taylor Wimpey) who, with remarkable foresight and enthusiasm, hosted the project. This report seeks to make the findings more widely available and is offered for consideration by everyone who has a part to play in making low and zero carbon housing a reality

    An evaluation of the hygrothermal performance of 'standard' and 'as built' construction details using steadystate and transient modelling

    Get PDF
    Accurate assessment of both surface and interstitial condensation risk at the design stage of buildings is of great importance - not just to minimise the damaging effects moisture can cause to building envelopes, but also to contribute to the provision of adequate indoor air quality. Guidance certainly does exist with regards to limiting thermal bridging in order to prevent condensation occurring on new constructions. However, a recent study has provided clear evidence that the reality, both in translating the available guidance into a specific design and in construction on site is often rather different from the 'ideal'. This paper reports on that study and compares and evaluates the hygrothermal performance of construction details for different phases during the building life cycle. The results of both the surface and interstitial condensation risk simulations under both steady-state and transient conditions are presented and discussed. Significant differences in the hygrothermal performance of 'standard' and 'as built' construction details are observed

    Type II superlattices for infrared detectors and devices

    Get PDF
    Superlattices consisting of combinations of III-V semiconductors with type II band alignments are of interest for infrared applications because their energy gaps can be made smaller than those of any 'natural' III-V compounds. Specifically, it has been demonstrated that both InSb/InAsxSb1-x superlattices and Ga1-xInxSb/InAs superlattices can possess energy gaps in the 8-14 mu m range. The efforts have focused on the Ga1-xInxSb/InAs system because of its extreme broken gap band alignment, which results in narrow energy gaps for very short superlattice periods. The authors report the use of in situ chemical doping of Ga1-xInxSb/InAs superlattices to fabricate p-n photodiodes. These diodes display a clear photovoltaic response with a threshold near 12 mu m. They have also attained outstanding structural quality in Ga1-xInxSb/InAs superlattices grown on radiatively heated GaSb substrates. Cross-sectional transmission electron microscope images of these superlattices display no dislocations, while high resolution X-ray diffraction scans reveal sharp high-order superlattice satellites and strong Pendellosung fringes

    Condensation risk – impact of improvements to Part L and robust details on Part C Final report: BD2414

    Get PDF
    This report summarises the main findings of the project ‘Impacts of Improvements to Part L and Robust Construction Details (RCD) on Part C’. The work consisted of a fieldwork element, undertaken by Leeds Metropolitan University and a modelling element carried out by University College London. Details of the work programme are contained in Appendix 1. The fieldwork consisted of the analysis of design material and site surveys from 16 housing developments constructed to Part L 2002 and adopting the Robust Construction Detail route to compliance. The modelling element of the project sought to identify the extent to which the ‘as built’ details give rise to a significantly increased condensation risk as compared to the relevant ‘standard’ robust construction details, as defined in the guidance. In addition to assessing ‘as built’ performance, the modelling phase of the project has investigated the suitability of the relevant calculation methods used to assess the risk of surface and interstitial condensation and mould growth. This report draws together the important conclusions from the project which has previously been presented in several very detailed interim reports and also for the first time presents the results of a workshop where these results were discussed to obtain industry feedback. The overall conclusions, future work and dissemination plans are also presented

    Prototyping Operational Autonomy for Space Traffic Management

    Get PDF
    Current state of the art in Space Traffic Management (STM) relies on a handful of providers for surveillance and collision prediction, and manual coordination between operators. Neither is scalable to support the expected 10x increase in spacecraft population in less than 10 years, nor does it support automated manuever planning. We present a software prototype of an STM architecture based on open Application Programming Interfaces (APIs), drawing on previous work by NASA to develop an architecture for low-altitude Unmanned Aerial System Traffic Management. The STM architecture is designed to provide structure to the interactions between spacecraft operators, various regulatory bodies, and service suppliers, while maintaining flexibility of these interactions and the ability for new market participants to enter easily. Autonomy is an indispensable part of the proposed architecture in enabling efficient data sharing, coordination between STM participants and safe flight operations. Examples of autonomy within STM include syncing multiple non-authoritative catalogs of resident space objects, or determining which spacecraft maneuvers when preventing impending conjunctions between multiple spacecraft. The STM prototype is based on modern micro-service architecture adhering to OpenAPI standards and deployed in industry standard Docker containers, facilitating easy communication between different participants or services. The system architecture is designed to facilitate adding and replacing services with minimal disruption. We have implemented some example participant services (e.g. a space situational awareness provider/SSA, a conjunction assessment supplier/CAS, an automated maneuver advisor/AMA) within the prototype. Different services, with creative algorithms folded into then, can fulfil similar functional roles within the STM architecture by flexibly connecting to it using pre-defined APIs and data models, thereby lowering the barrier to entry of new players in the STM marketplace. We demonstrate the STM prototype on a multiple conjunction scenario with multiple maneuverable spacecraft, where an example CAS and AMA can recommend optimal maneuvers to the spacecraft operators, based on a predefined reward function. Such tools can intelligently search the space of potential collision avoidance maneuvers with varying parameters like lead time and propellant usage, optimize a customized reward function, and be implemented as a scheduling service within the STM architecture. The case study shows an example of autonomous maneuver planning is possible using the API-based framework. As satellite populations and predicted conjunctions increase, an STM architecture can facilitate seamless information exchange related to collision prediction and mitigation among various service applications on different platforms and servers. The availability of such an STM network also opens up new research topics on satellite maneuver planning, scheduling and negotiation across disjoint entities

    Accommodation of lattice mismatch in Ge_(x)Si_(1−x)/Si superlattices

    Get PDF
    We present evidence that the critical thickness for the appearance of misfit defects in a given material and heteroepitaxial structure is not simply a function of lattice mismatch. We report substantial differences in the relaxation of mismatch stress in Ge_(0.5)Si_(0.5)/Si superlattices grown at different temperatures on (100) Si substrates. Samples have been analyzed by x‐ray diffraction, channeled Rutherford backscattering, and transmission electron microscopy. While a superlattice grown at 365 °C demonstrates a high degree of elastic strain, with a dislocation density <10^5 cm^(−2) , structures grown at higher temperatures show increasing numbers of structural defects, with densities reaching 2×10^(10) cm^(−2) at a growth temperature of 530 °C. Our results suggest that it is possible to freeze a lattice‐mismatched structure in a highly strained metastable state. Thus it is not surprising that experimentally observed critical thicknesses are rarely in agreement with those predicted by equilibrium theories

    Falls research:stumbling or striding?

    Get PDF
    corecore