1,155 research outputs found

    Precautionary saving and precautionary wealth

    Get PDF
    This is an entry for The New Palgrave Dictionary of Economics, 2nd Ed. JEL Klassifikation: C61, D11, E2

    Liquidity Constraints and Precautionary Saving

    Get PDF
    Economists working with numerical solutions to the optimal consumption/saving problem under uncertainty have long known that there are quantitatively important interactions between liquidity constraints and precautionary saving behavior. This paper provides the analytical basis for those interactions. First, we explain why the introduction of a liquidity constraint increases the precautionary saving motive around levels of wealth where the constraint becomes binding. Second, we provide a rigorous basis for the oft-noted similarity between the effects of introducing uncertainty and introducing constraints, by showing that in both cases the effects spring from the concavity in the consumption function which either uncertainty or constraints can induce. We further show that consumption function concavity, once created, propagates back to consumption functions in prior periods. Finally, our most surprising result is that the introduction of additional constraints beyond the first one, or the introduction of additional risks beyond a first risk, can actually reduce the precautionary saving motive, because the new constraint or risk can hide' the effects of the preexisting constraints or risks.

    A critical analysis of the uniform system of accounting for motor carriers as prescribed by the Interstate Commerce Commission

    Get PDF
    This paper will look to analyze the uniform system of accounting for motor carriers as prescribed by the Interstate Commerce Commission by critically examining the fundamental and quintessential foundations of the uniform system and what constructs its infrastructure

    Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established

    Get PDF
    Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI) influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus) and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 Β΅g 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1). Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes

    Viral Evasion of the Complement System and Its Importance for Vaccines and Therapeutics

    Get PDF
    The complement system is a key component of innate immunity which readily responds to invading microorganisms. Activation of the complement system typically occurs via three main pathways and can induce various antimicrobial effects, including: neutralization of pathogens, regulation of inflammatory responses, promotion of chemotaxis, and enhancement of the adaptive immune response. These can be vital host responses to protect against acute, chronic, and recurrent viral infections. Consequently, many viruses (including dengue virus, West Nile virus and Nipah virus) have evolved mechanisms for evasion or dysregulation of the complement system to enhance viral infectivity and even exacerbate disease symptoms. The complement system has multifaceted roles in both innate and adaptive immunity, with both intracellular and extracellular functions, that can be relevant to all stages of viral infection. A better understanding of this virus-host interplay and its contribution to pathogenesis has previously led to: the identification of genetic factors which influence viral infection and disease outcome, the development of novel antivirals, and the production of safer, more effective vaccines. This review will discuss the antiviral effects of the complement system against numerous viruses, the mechanisms employed by these viruses to then evade or manipulate this system, and how these interactions have informed vaccine/therapeutic development. Where relevant, conflicting findings and current research gaps are highlighted to aid future developments in virology and immunology, with potential applications to the current COVID-19 pandemic

    Prevalence of Antibodies against Hantaviruses in Serum and Saliva of Adults Living or Working on Farms in Yorkshire, United Kingdom

    Get PDF
    We acknowledge Clement and colleagues for their comments [1] on our paper [2]. We agree that many controversies are being discussed by the hantavirus community, particularly surrounding the interpretation of serological results and the designation of new species and strains. Within this setting, we are grateful for the opportunity to respond to the key factual and methodological points raised by Clements et al. [...

    Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir

    Get PDF
    Ferrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09) induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu) of virus. We have demonstrated that reducing the challenge dose to 102 pfu delays the onset of clinical signs by 1 day, and results in a modest reduction in clinical signs, and a less rapid nasal cavity innate immune response. There was also a delay in virus production in the upper respiratory tract, this was up to 9-fold greater and virus shedding was prolonged. Progression of infection to the lower respiratory tract was not noticeably delayed by the reduction in virus challenge. A dose of 104 pfu gave an infection that was intermediate between those of the 106 pfu and 102 pfu doses. To address the hypothesis that using a more authentic low challenge dose would facilitate a more sensitive model for antiviral efficacy, we used the well-known neuraminidase inhibitor, oseltamivir. Oseltamivir-treated and untreated ferrets were challenged with high (106 pfu) and low (102 pfu) doses of influenza H1N1pdm09 virus. The low dose treated ferrets showed significant delays in innate immune response and virus shedding, delayed onset of pathological changes in the nasal cavity, and reduced pathological changes and viral RNA load in the lung, relative to untreated ferrets. Importantly, these observations were not seen in treated animals when the high dose challenge was used. In summary, low dose challenge gives a disease that more closely parallels the disease parameters of human influenza infection, and provides an improved pre-clinical model for the assessment of influenza therapeutics, and potentially, influenza vaccines

    Pre-clinical models to define correlates of protection for SARS-CoV-2

    Get PDF
    A defined immune profile that predicts protection against a pathogen-of-interest, is referred to as a correlate of protection (CoP). A validated SARS-CoV-2 CoP has yet to be defined, however considerable insights have been provided by pre-clinical vaccine and animal rechallenge studies which have fewer associated limitations than equivalent studies in human vaccinees or convalescents, respectively. This literature review focuses on the advantages of the use of animal models for the definition of CoPs, with particular attention on their application in the search for SARS-CoV-2 CoPs. We address the conditions and interventions required for the identification and validation of a CoP, which are often only made possible with the use of appropriate in vivo models

    A Comparison of Women’s Travel to Mammography Services and Average Week Day Trip Length

    Get PDF
    Long travel distances/times to a mammography service may act as a barrier that hinders women from seeking screening mammography on a recommended schedule. Average weekday trip length data from the New South Wales Travel Survey was compared with the average distance women travelled to a mammography service, the difference was tested using the Wilcoxon Signed Rank Test. The distance travelled to mammography services was statistically greater than the average week day trip length from the New South Wales Travel Survey (4.3 km, 95% CI 3.3 to 5.9 kms, p,0.001). This study has identified that within New South Wales there is a significant difference between average week day trip length travel and client travel to mammography services. Therefore, highlighting that women are undertaking a greater than normal travel burden to access mammography services. The comparison of normal weekday travel and travel to mammography services has enabled the burden of travel to mammography services to be identified. Reducing the burden of travel to mammography services is pivotal to increasing the utilization of mammography services and reducing the inequalities in health comes
    • …
    corecore