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Abstract

Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter,
and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and
cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through
vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on
defective interfering (DI) influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a
large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have
cloned one such highly active DI RNA derived from segment 1 (244 DI virus) and shown earlier that intranasal administration
protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human
influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 mg 244 RNA delivered as A/PR/
8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1). Specifically,
244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active
principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease.
Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of
infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies
and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI
virus is a highly effective antiviral with activity potentially against all influenza A subtypes.
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Introduction

Human influenza is a debilitating respiratory disease which

arises from seasonal winter outbreaks and catastrophic world-wide

pandemics [1–3]. Measures to combat influenza include vaccines

[4–6] and antivirals [7–9]. Both have their strengths and

weaknesses. Current vaccines are highly specific and to be effective

have to be closely matched to the prevailing virus and immunity

takes 1–3 weeks to reach maximum efficacy. People whose

immune system is compromised (including the elderly) may not

make a fully protective immune response or their immunity may

wane too quickly to be effective [10,11]. The antivirals oseltamivir

and zanamivir protect against all influenza A and B strains and

can be used prophylactically or therapeutically. Oseltamivir and

zanamivir are administered twice daily, and are most effective

when taken before or soon after infection. However, oseltamivir-

resistant mutants were already wide-spread in seasonal H1N1

virus prior to 2009 [12,13], and are now appearing in the 2009

pandemic virus [14–16]. More counter-measures, especially those

that are broad-spectrum and not subject to virus resistance are

urgently needed.

Our approach is to use defective-interfering (DI) virus [17],

which is produced by nearly all viruses during their replication

process, as an antiviral in vivo. DI viruses are widely known to have

powerful antiviral (interfering) activity in cell culture but, with a

few notable exceptions, there is little indication that this activity

translates into conferring protection from disease in animal models

[18]. One of the first accounts, more than 60 years ago, refers to

what is now known as DI influenza virus [19,20]. A DI influenza

virus is defective as it has a large deletion in the central region of

one of the 8 viral RNA segments that constitute the infectious

genome. This is a DI RNA. Not all defective RNAs are interfering,

hence interference is a particular property of a certain class of

defective RNA. Influenza DI particles are indistinguishable from
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normal infectious particles except in that they contain at least one

genomic segment that has undergone a massive deletion. Any one

of the 8 genomic segments can give rise to a DI RNA, although DI

RNAs arise most frequently from segments 1, 2 or 3. The situation

is made more complex as the position of the central deletion in any

one segment can vary considerably, so giving rise to many different

DI RNA sequences. Natural populations of DI influenza virus can

contain greater than 50 different defective RNA sequences

[21,22], and initially it was impossible to produce a defined DI

virus preparation that could be quality controlled. We solved this

problem by using cloning techniques to isolate single, naturally

occurring DI RNAs of known sequence [22]. One of these DI

RNAs, originating from segment 1 (called 244), was incorporated

by reverse genetics into A/PR/8/34 influenza virus to form the DI

virus 244/PR8. This DI virus is highly effective in protecting

against clinical disease caused by a lethal influenza challenge in a

mouse model [23]. In mice a single intranasal dose administered

before or at the same time as the infectious virus completely

suppresses clinical disease symptoms caused by H1N1, H2N2,

H3N2 or H3N8 viruses also given intranasally. Post-infection

therapy is also effective. 244/PR8 is not toxic and generates no

adverse clinical effects, and the administered preparation is not

infectious. Different strains of mice and elderly mice are well

protected [24–26]. Infection of mice with severe-combined

immunodeficiency (SCID) shows that the adaptive immune

response is not required for protection but is needed to clear

infection [24]. Interferon is made locally in the respiratory tract in

response to DI virus but is not required for protection from

influenza A viruses. However, interferon affords protection from

heterologous respiratory viruses such as influenza B and a

paramyxovirus, pneumonia virus of mice [26,27]. On this basis

DI virus offers a potentially attractive new addition to the armoury

of anti-influenza treatments.

A DI influenza virus is not capable of independent replication as

it contains at least one defective RNA segment. However, when an

infectious virus particle enters a cell which a DI virus has already

invaded, it replicates not only its own full length RNA segments

but also the DI RNA. Little is known of the details of the

mechanism by which an influenza DI virus achieves its antiviral

effects, but it is characteristic of all DI viruses that defective

particles come to predominate over infectious virus in a cell culture

[28]. All influenza DI RNAs retain the common replication and

packaging signals that are located at the termini of each RNA

segment [8,23] suggesting that the DI genome is recognised by and

subverts the viral replication machinery so that DI RNAs are

made in preference to full-length genomic RNAs. In addition there

is probably preferential packing of the DI genome with the cell

producing more non-infectious DI virus than infectious virus

particles [29]. It is envisaged that protection in vivo against

influenza A viruses operates through decreasing the infectious

virus load, while increasing the production of DI RNA and DI

virus. This significantly reduces or obviates clinical disease, and

gives the adaptive immune system time to become activated and

clear the infection. Because the majority of progeny virus (both DI

and infectious virus) is packaged by the proteins of the infecting

virus, a solid adaptive immunity is generated that protects mice

from further infection by the same strain of virus [23,25].

Although we have extensive proof of concept in mice, protection

of ferrets is the accepted pre-clinical acid test for influenza vaccines

and antivirals. Ferrets are highly sensitive to infection by human

influenza viruses [30,31], and mount a disease that closely

resembles that in humans [32–36]. Ferrets have been used in

many aspects of influenza biology including the study of recent

human [37,38] and avian influenza viruses [39–43], airborne

transmission [36,37,44], the evaluation of vaccines [6,14,19],

testing antivirals [45,46], and the interaction with bacteria in the

respiratory tract [47]. We have evaluated the ability of a single

intranasal dose of cloned DI virus (containing as little as 0.2 mg of

antiviral DI RNA) to protect ferrets from the recent 2009

pandemic influenza A virus (A/California/04/09, H1N1). We

report that all clinical signs of disease were significantly reduced

and that animals mounted a solid virus-specific antibody response

and became immune to reinfection with A/California/04/09.

Results

Influenza in ferrets caused by the pandemic influenza
virus A/California/04/09 (H1N1) (A/Cal)

Typically ferrets infected with A/Cal (102 TCID50) show a peak

of virus infectivity in nasal washes on days 2 and 3, which then

declines and is undetectable by day 8. The peak of infectivity is

followed one day later by a fever spike (.40uC) and a significant

but transient weight loss (day 3). There is an increase in the

number of small round cells in nasal washes that commences on

day 2 and peaks on day 3. This declines slowly and is still above

baseline on day 14. The peak of infection is accompanied by

pronounced nasal discharge and sneezing. However, there is no

significant loss of appetite, loss of activity, or diarrhoea (data not

shown).

244 DI virus reduces fever in A/Cal-infected ferrets
Groups of 5 ferrets were infected intranasally with A/Cal (102

TCID50). Animals were treated at the same time with an

intranasal dose of active 244 DI virus containing approximately

2 mg or 0.2 mg of active agent (244 RNA) in 300 or 30 mg

respectively of virus protein or with UV-inactivated 244 DI virus

(300 or 30 mg). Figure 1A shows that the control infected ferrets

treated with either 300 or 30 mg of inactivated 244 DI virus

displayed a fever spike on day 3 post infection (pi) which is a clear

sign of disease. Infected animals treated with active 244 DI virus

had significantly lower temperatures on day 3 compared to the

control group treated with inactivated 244 DI virus. The mean

group temperature rises for infected animals treated with 300 mg

244 DI virus or inactivated 244 DI virus respectively were 0.58uC
and 1.44uC (Student’s t-test p = 0.039). Similarly, ferrets treated

with 30 mg of 244 DI or inactivated 244 DI experienced mean

temperature rises of 0.84uC and 1.34uC (p = 0.016) (Fig. 1B).

Control non-infected animals treated with 300 mg of 244 DI virus

or saline had no fever peak (data not shown).

Temperature changes were also recorded by subcutaneously

implanted transponders. These confirmed a fever peak on day 3 in

infected animals given control inactivated 244 DI virus. Animals

treated with 300 mg of active 244 DI virus had significantly less

fever than animals treated with the same amount of inactivated

244 DI virus (0.16uC increase compared with a 1.2uC increase,

p = 0.025) while animals treated with the lower dose of 30 mg 244

DI virus also had significantly less fever than animals treated with

the same amount of inactivated 244 DI virus (0.02uC for 244 DI

virus and 0.84uC for inactivated 244 DI virus, p = 0.009) (data not

shown).

The data show that active 244 DI virus significantly reduces the

fever response in ferrets infected with A/Cal. The 30 and 300 mg

doses of 244 DI virus gave similar protection.

244 DI virus reduces weight loss in A/Cal-infected ferrets
A/Cal-infected ferrets treated with 300 mg 244 DI virus showed

a smooth increase in weight over the period of observation

(Fig. 2A). In contrast, infected animals treated with inactivated 244

Defective Interfering Virus Protects Ferrets

PLOS ONE | www.plosone.org 2 December 2012 | Volume 7 | Issue 12 | e49394



DI virus showed a pronounced and highly significant weight loss

on day 3, falling to below their initial mean group weight. These

animals then resumed weight gain but from days 3–8 their weights

were significantly lower than the 244 DI virus-treated group, and

from days 9–14 were all still lower than the 244 DI virus-treated

group at the end of the experiment, although not significantly so.

Animals treated with 30 mg 244 DI virus showed a small weight

loss on day 3 but weights were still significantly greater than the

control group treated with an equivalent amount of inactivated

244 DI virus from days 3–14 (Fig. 2B). Ferrets treated with 300 mg

active 244 DI virus (but not infected with A/Cal) gained weight

steadily at a very similar trajectory to those given saline, indicating

that the higher dose of 244 DI virus had no deleterious effect of

weight gain (Fig. 2C).

244 DI virus reduces respiratory disease (sneezing and
nasal discharge) in A/Cal-infected ferrets

Sneezing and nasal discharge are typical clinical signs of

influenza, and ferrets were monitored twice daily for changes in

these parameters. Data for combined sneezing and nasal discharge

observations are shown in Figure 3, where the reductions effected

by 244 DI virus were highly significant (one tailed Mann-Whitney

U test, p = 0.006). 300 mg 244 DI virus reduced sneezing and nasal

discharge calculated in a variety of combinations, with all being

statistically significant (p#0.05). 30 mg 244 DI virus had lower

efficacy, but significantly reduced nasal discharge (Table S1).

244 DI reduces A/Cal infectivity in ferret nasal washes
Nasal washes were taken daily from ferrets and assayed for

infectious A/Cal and for 244 DI RNA (see next section). Figure 4A

shows that low amounts of infectivity appeared in control ferrets

treated with inactivated 244 DI virus in day 1, peaked on day 2,

and then began to decline from day 3. In animals treated with

Figure 1. Change in rectal temperatures in ferrets infected with A/California/04/09 (H1N1) and treated with 244 DI virus
simultaneously on day 0. Ferrets were treated with A/Cal+300 mg 244 DI virus (X); A/Cal+30 mg 244 DI virus (&); A/Cal+300 mg inactivated 244 DI
virus (m); A/Cal+30 mg inactivated 244 DI virus (x). In (a) the mean changes in temperatures of each group (n = 5) are expressed as the difference to
the group average temperature on day 0. Animals were anaesthetised and rectal temperatures taken prior to any other procedure. The arrow
denoted the fever spike on day 3 post infection/treatment. In (b) the statistical significance of temperature change differences on day 3 after
infection/treatment with 300 mg (left-hand panel) or 30 mg (right-hand panel) 244 DI virus or inactivated (i) 244 DI virus were determined using a one
tailed unpaired t-test. The mean temperature change seen in ferrets treated with 300 mg 244 DI was 0.58uC (SD 60.19uC) and in those treated with
300 mg inactivated 244 DI virus was 1.44uC (SD 60.74uC). The mean temperature change seen in ferrets treated with 30 mg 244 DI was 0.84uC (SD
60.30uC) and in those treated with 30 mg inactivated 244 DI virus was 1.34uC (SD 60.30uC).
doi:10.1371/journal.pone.0049394.g001

Defective Interfering Virus Protects Ferrets
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300 mg 244 DI virus infectious virus was also first detected on day

1, but peaked over days 3–5, being both delayed and reduced. The

reduction of infectivity by 244 DI virus on day 2 (764-fold) was

highly significant (p = 0.008); the reduction on day 3 was 17-fold

and was also significant (p = 0.095), both using a two-tailed Mann-

Whitney U test (Fig. 4B, 4C). Infectivity levels in DI virus-treated

animals were maintained until day 5, and were undetectable on

day 8, showing that 244 DI virus did not prolong infection (Table

S2). The dynamics of infectious virus in animals treated with a 10-

fold lower dose of 244 DI virus (30 mg) were very similar to those

observed with the higher DI virus dose.

244 DI RNA is hugely amplified in nasal washes of ferrets
infected with A/Cal

244 RNA is the antiviral active principle responsible for

protection from influenza A virus infection [23]. To determine

how this interaction proceeded in the ferret, nasal washes were

assayed for the presence of DI virus-specific 244 RNA by

quantitative RT-PCR. Figure 5 shows that 244 DI RNA was

below detectable levels in animals treated with 244 DI virus at 1

day after treatment. However, by day 2, 244 DI virus RNA levels

had increased by $1000 to 10,000-fold, showing that it was being

replicated by A/Cal. Amounts of DI RNA in the individual ferrets

within a group were highly reproducible (Figure S1). The small

amount of 244 DI RNA in the groups given inactivated DI virus

and A/Cal is the result of incomplete destruction of DI RNA.

Levels of DI RNA declined and were undetectable by day 10 after

infection. There was no discernible difference in the 244 DI RNA

dynamics in ferrets treated with 300 mg or 30 mg of active 244 DI

virus. These data demonstrate for the first time in ferrets the ability

of the 244 DI RNA to be amplified by the agent that it is acting

against – in this case A/Cal influenza virus. This observation is

fully consistent with data arising from the mouse model [23,24].

Other clinical parameters
Ferrets were also monitored over 21 days post infection for

diarrhoea (1 instance reported in each of infected 2 ferrets), change

(loss) of appetite (none recorded), and changes in activity/

behaviour (7 instances recorded in 4 different groups). None was

considered significant. The number of cells in nasal washes

increased by approximately 50-fold in all A/Cal-infected animals

compared with the saline-treated group, although 244 DI virus on

its own did not stimulate the cell content of nasal washes, and did

not differ from the group treated with saline (data not shown). It

seems therefore that the increase in cells in nasal washes is a

response to infectious influenza virus. In addition serum HI titres

Figure 2. Changes in weight of ferrets over the course of
infection with A/Cal. Shown is the mean group body weight changes
in A/Cal influenza virus-infected ferrets treated with (a) 300 mg 244 DI
virus (&) or inactivated 244 DI virus (m), (b) 30 mg 244 DI virus (&) or
inactivated 244 DI virus (m). (c) Shows the weight changes in ferrets
inoculated with saline (#) or treated with 300 mg of active 244 DI virus
(N). Data are expressed as a percentage change compared to the group
average weight at day 0. The statistical significance of body weight
changes on any one day was determined by a one tailed unpaired t-test
and is indicated by an asterisk (p#0.05).
doi:10.1371/journal.pone.0049394.g002

Figure 3. Analysis of combined sneezing and nasal discharge
data in A/Cal infected ferrets treated with 300 mg of active 244
DI virus (&) or 300 mg of inactivated (i) 244 DI virus (m). The
horizontal line indicates the mean: 244 DI virus mean was 10.45%;
inactivated 244 DI virus mean was 22.73%. The values are the
occurrence of sneezing and nasal discharge events in each group over
the 14 days of observation. The scores were assigned 10% for each
individual event such that all 5 ferrets were positive for both sneezing
and nasal discharge would be scored as 100%; a.m. and p.m.
assessments are separate. Zero was only scored when the other group
was positive. The p value was determined using a one tailed Mann-
Whitney U test.
doi:10.1371/journal.pone.0049394.g003

Defective Interfering Virus Protects Ferrets
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specific to A/California/04/09 (H1N1) taken at 14 days after

infection were unaffected by the treatment with 244 DI virus, with

titres in all A/Cal-infected groups rising from ,1/40 to .1/8000

(data not shown).

Ferrets protected from A/Cal with DI virus are immune to
reinfection with A/Cal

We have previously shown that mice protected by 244 DI virus

were solidly immune to rechallenge with the same virus [23]. This

allayed concerns that, following treatment with 244 DI virus, the

challenge infection had been attenuated and might result in a

weaker adaptive immune response. To determine the situation in

ferrets, the groups initially receiving A/Cal+300 mg active 244 DI

virus, A/Cal+300 mg inactivated 244 DI virus, and a saline

inoculum were challenged with A/Cal at 21 days after the initial

A/Cal infection. A dose of (106 TCID50) was chosen as high doses

of influenza virus overcome the protection mediated by DI virus in

mice (unpublished data). Thus any protection observed could be

attributed to adaptive immunity. Naı̈ve animals showed a peak

mean rise in rectal temperature (0.96uC) on day 2, while the

temperature of other previously infected groups increased by

#0.2uC. This difference was statistically significant (p#0.03).

These animals were protected regardless of treatment with DI

virus (Figure S2). Temperature recording by transponder chip

gave a similar result with a temperature spike only in naı̈ve animals

(of 0.66uC compared with #0.18uC for the other groups) (data not

shown). Only naı̈ve animals experienced significant weight loss

following challenge, also on day 2. In particular, A/Cal-infected

ferrets that had previously been treated with 244 DI virus were

highly significantly better at gaining weight over days 2–7 than

those treated with inactivated 244 DI virus (Figure S3). Table S3

summarizes particulars of sneezing, nasal discharge, activity loss

Figure 4. Summary of A/Cal infectivity in nasal washes. Panel (a) shows ferrets infected with A/Cal on day 0 and treated with 300 mg 244 DI
virus (&) or infected and treated with 300 mg inactivated 244 DI virus (m); another group was not infected but treated with 300 mg of active 244 DI
virus (N). A standard preparation of A/Cal virus was used to normalise titrations carried out on different days. These varied by less than 4-fold. The
dotted line is the limit of sensitivity of the assay (1.92 log10 FFU/ml). Significant reduction in infectivity (by a two-tailed Mann-Whitney U test) in ferrets
treated with 244 DI virus is denoted by **. Panels (b) and (c) show details of the statistical analysis on day 2 and 3, respectively.
doi:10.1371/journal.pone.0049394.g004
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and appetite loss in individual ferrets. Naı̈ve animals were positive

for all clinical signs on at least 2 observation days following

challenge. Most, if not all, animals displayed one or more clinical

sign during the observation periods. In contrast, groups that had

previously been infected with A/Cal showed only very occasional

signs of sneezing, and no sign of disease. The reduction in clinical

signs in non-naı̈ve animals compared to the naı̈ve control was

highly significant (p,0.0001) (Fig. 6). In conclusion, ferrets that

had been protected from influenza by treatment with 244 DI virus

were able to mount an immune response that protected them from

subsequent challenge with the same virus in the same way that was

seen with control infected animals. This finding is entirely

consistent with the high serum HI antibody titres found in all

A/Cal-infected ferret groups, as reported above.

Discussion

The ferret model of influenza is viewed as the closest to the

human disease, and is widely used to evaluate vaccines and other

anti-influenza measures. In this study we infected ferrets with an

isolate from the latest influenza pandemic (A/California/04/

2009). The possibility that DI virus might have a moderating effect

on influenza has long intrigued virologists but the only data

relevant to the ferret model is our preliminary study in which

animals were protected using an intranasal dose of a DI virus

preparation which contained an unspecified number of DI RNAs

[48]. Here we have investigated the protection afforded by a fully

defined, cloned DI RNA delivered in an influenza virus particle.

The delivery vehicle was carefully selected to recognise both the

a2,6 and a2,3 sialic acid receptors recognised by influenza A

viruses [49], so that 244 DI RNA is delivered to cells that can

potentially be infected by an incoming influenza virus. This is

important as when we treated ferrets with 244 DI RNA in a strain

of PR8 that recognises predominantly a2,3 sialic acid receptors

there was no amelioration of infection by infectious virus that

recognised predominantly a2,6 sialic acid receptors. In that study

the DI RNA was eventually amplified by the challenge virus A/

Sydney/5/97 (H3N2), but presumably too late to be of any clinical

benefit (unpublished data).

The data above (summarized in Table 1) show clearly that both

doses of 244 DI RNA (300 or 30 mg of DI virus containing 2 or

0.2 mg of 244 DI RNA, respectively) significantly ameliorated

clinical disease caused by A/Cal infection. The higher dose

resulted in a reduction in every clinical parameter tested (fever,

weight loss, sneezing and nasal discharge, and infectious load),

which was concomitant with the enhancement of 244 RNA in

nasal washes. DI RNA was undetectable by a sensitive quantitative

RT-PCR at 1 day post treatment, but was amplified on infection,

and appeared in nasal washes at the same time as infectious virus.

The overall reduction in symptoms was similar to that observed

with oseltamivir treatment of ferrets infected with the same virus,

where the animals were treated within 2 hours of infection and

then twice daily for 5 days [50]. The present study used only a

single very low dose of DI RNA (2 or 0.2 mg), whereas most

antivirals are used in milligram amounts with multiple doses. It is

also relevant to the success of the treatment that infectious A/Cal

was not detected beyond 8 days post infection, and that the DI

RNA was not detected beyond 10 days by quantitative RT-PCR:

the presence of amplified active DI RNA made no difference to

the dynamics of clearance. 244 DI RNA amplified by A/Cal

would be expected to be packaged as a DI virus particle with

proteins, including the surface haemagglutinin and neuraminidase,

synthesised by A/Cal. Further, it is likely that this DI 244/Cal

virus transmitted its 244 DI RNA to other cells in the respiratory

tract where it protected them from infection. In principle, such a

DI 244/Cal virus may also be transmitted in airborne droplets/

aerosols of nasal secretions, along with infectious virus, to other

Figure 5. 244 DI virus (244) RNA is amplified in nasal washes by
A/Cal. Ferrets were infected with A/Cal on day 0 and treated with 244
DI virus or inactivated 244 DI virus. Levels of 244 DI RNA were
determined by quantitative RT-PCR. Mean 244 RNA copy numbers for
each ferret group (n = 5) are plotted. Panel (a) shows ferrets that were
infected with A/Cal influenza virus and treated with 300 mg 244 DI virus
(&), or 30 mg 244 DI virus (m), or 300 mg (i) inactivated 244 DI virus (.),
or 30 mg (i) inactivated 244 DI virus (X). Panel (b) shows non-infected
ferrets that were given 300 mg 244 DI virus (%), or diluent (n). The
dotted line shows the limit of detection. Figure S1 gives details for
individual animals.
doi:10.1371/journal.pone.0049394.g005

Figure 6. Statistical analysis of summed clinical signs for each
day in ferrets re-challenged with A/Cal. The group that previously
experienced A/Cal+300 ug 244 DI virus (&) is compared with the group
that previously experienced only saline (m). The p value was
determined using a one tailed Mann-Whitney U test.
doi:10.1371/journal.pone.0049394.g006
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individuals. It will be of interest to determine how DI virus might

alter the dynamics of influenza transmission and infection.

One important proviso of treating a virus infection is that the

immune response is not so weakened that the cognate adaptive

immune response is compromised. Accordingly, we tested

immunity measuring the amount of virus-specific serum antibody

by HI and by challenging animals with a second dose of A/Cal.

Despite the amelioration of the A/Cal-mediated clinical disease by

treatment with DI virus we found that there were similar levels of

HI antibody in all infected groups. Animals re-challenged with A/

Cal at 21 days were solidly protected from disease. This protection

was most likely mediated by serum HI antibody, which is known to

be protective, and other adaptive immune responses rather than

by residual DI RNA, as DI RNA could not be detected in nasal

wash or tissues (data not shown) at 14 days after the first infection.

Innate immune responses stimulated by the original infection are

probably not a factor in protection at the time of rechallenge, as

most of these responses which rose rapidly in ferrets in concert

with the symptoms of influenza, had declined significantly by 6

days post infection [51].

The antiviral activity resulting from intranasal administration of

244 DI virus in ferrets has a number of unique features. Protection

requires only a single dose, a very small amount (0.2 mg) of DI 244

RNA, and delivery to cells by 104 HAU of an influenza A virus

(approximately 30 mg) that recognises a2,6 and a2,3 sialic acid

receptors [49]. DI RNA is amplified only if cells are infected by an

influenza A virus, otherwise the DI RNA degrades. In mice

protection mediated by a single critical dose of 244 DI virus is lost

1–2 weeks after treatment (unpublished data). Treatment with DI

RNA does not affect clearance of infectious influenza virus, and

the DI RNA itself rapidly disappears from nasal washes. In

addition, in mice DI virus stimulates sufficient interferon type I to

protect against respiratory disease caused by non-influenza virus

although this is not needed for protection from influenza A viruses

[26,27]. The development of resistance to 244 DI virus has not

been detected. For this to occur, the polymerase, which is encoded

by infectious virus and is used by all 8 full-length segments, would

have to acquire amino acid changes such that it no longer

recognised the DI RNA while at the same time acquiring

compensating mutations in all 8 full-length segments simulta-

neously (unpublished data). Given a mutation rate of 1025, the

chance of this occurring is approximately 10240, hence this is

unlikely to arise. Finally, A/Cal-infected animals that are

protected by DI RNA mount a normal HI antibody response

and are solidly immune to rechallenge with the same virus. The

treatment demonstrated above could be considered directly

relevant to treatment of humans who had just been or were about

to be exposed to infection. We need in due course to determine the

limitations of treatment or after before infection, and if these

mirror the data we have already produced in mice [23]. In

summary, data here underline the strong antiviral capacity of 244

DI virus and demonstrate how it could be used as a novel antiviral

in a clinical context.

Materials and Methods

Ethics statement
The experimental animal work described here has been

scrutinised and approved by the Ethical Review Committee of

the Health Protection Agency (Porton), as required by the UK

Home Office Animals (Scientific Procedures) Act, 1986. All animal

work was conducted according to UK Home Office legislation for

animal experimentation. The premises in which the work was

conducted are approved under Home Office Certificate of

Designation PCD70/1707.

Production of cloned 244 DI virus by reverse genetics
244 DI RNA was originally generated spontaneously from

segment 1 during the transfection of 293T cells with plasmids

required to make infectious influenza A/PR/8/34 [52]. Its

sequence has been published [23,52]. The original 244/PR8 DI

virus protected mice from lethal influenza but ferrets were not

protected effectively (unpublished data). This related to the

receptor specificity of the HA as a2,3-linked sialyl receptor

sequences are predominant in the mouse respiratory system, and

a2,6-linked sialyl receptor sequences predominant in the ferret

respiratory system [53–55]. Thus to make the DI virus for the

current study we cloned and used the HA and NA proteins from a

different substrain of PR8 (A/PR8(Warwick), which binds to both

a2,6- and a2,3-linked sialyl receptors [49]. An uncloned DI A/

PR8(Warwick) had earlier successfully protected ferrets from an

H3N2 virus [48]. The new recombinant virus bound as expected

to a2,6- and a2,3-linked sialic acids in a surface plasmon

resonance assay (data not shown). Plasmids were transfected into

293T cells and, after 24 h, these were trypsinized, mixed with

MDCK cells and re-plated. Resulting virus was passaged once in

embryonated chicken’s eggs, and the resulting mixture of 244/

PR8 DI virus and infectious helper PR8 virus was purified away

from extraneous contaminating material by differential centrifu-

gation through sucrose. Stocks were resuspended in PBS

containing 0.1% w/v bovine serum albumin, standardized by

haemagglutination titration, and stored in liquid nitrogen.

Protection activity in mice was comparable to that shown earlier

[23]. DI virus was UV-irradiated to remove helper virus infectivity

with a short burst (50 seconds) of UV irradiation at 253.7 nm

(0.64 mW/cm2) (‘active DI virus’ [23]). Longer UV irradiation

(8 minutes) inactivates protecting activity for mice although it does

not destroy all DI RNA (‘inactivated DI virus’). It does not affect

haemagglutinin or neuraminidase activities, and so controls for

any immune system-stimulating or receptor-blocking effects of 244

DI virus particles.

Challenge virus preparation
Pandemic 2009 influenza H1N1 A/California/04/2009 (A/

Cal; from CDC Atlanta, GA) was propagated in Madin-Darby

Table 1. Summary of 244 DI virus-mediated protection of
ferrets from influenza caused by A/Cal.

Benefit of treatment 244 DI virus

300 mg 30 mg

Reduction in fever by rectal temperature recording Yes* Yes

Reduction in fever by chip temperature recording Yes Yes

Reduction in loss of body mass Yes Yes

Reduction in sneezing Yes No

Reduction in nasal discharge Yes Yes

Reduction in combined sneezing & nasal discharge Yes No

Reduction of A/Cal infectivity in nasal washes Yes Yes

Increase in 244 DI RNA in nasal washes Yes Yes

Immunity to rechallenge with A/Cal Yes ND

*Statistically significant at $95% confidence limits; data presented
elsewhere in this report.
ND, not done.
doi:10.1371/journal.pone.0049394.t001
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canine kidney (MDCK) cells (Health Protection Agency Culture

Collection) and titrated by limiting dilution in the same cell type to

give a 50% tissue culture infectious dose (TCID50).

Ferret studies
All ferret experimental work was conducted according to UK

Home Office legislation for animal experimentation and was

approved by the local ethical committee. Thirty male ferrets

(Mustela putorius furo), 3–4 months of age, were obtained from

Highgate Farm, UK. All ferrets were confirmed to be seronegative

for antibodies to H1N1 influenza as determined by haemagglu-

tination-inhibition. Ferrets were separated into 6 groups, each

comprising 5 animals, and a unique identifier body temperature

transponder (idENTICHIP, Bio-Thermo) was inserted subcuta-

neously into the scruff of each ferret. Ferrets were sedated by

intramuscular injection of ketamine (17.9 mg/kg) and xylazine

(3.6 mg/kg) then each ferret was intranasally inoculated with

500 ml (250 ml per nare) of challenge solution. Groups of ferrets

(n = 5) were infected intranasally with 100 TCID50 of the

pandemic 2009 influenza virus A/California/04/09 (H1N1) (A/

Cal). The DI virus test groups were treated intranasally with a

mixture of A/Cal and active 244 DI virus containing approxi-

mately 2 mg 244 RNA in 300 of virus protein, or with A/Cal and

0.2 mg 244 RNA in 30 mg of virus protein. Control groups

received virus and UV-inactivated 244 DI virus equivalent to the

2 mg RNA dose, virus and UV-inactivated 244 DI virus equivalent

to the 0.2 mg RNA dose, or saline. Each inoculum was prepared

on the day of challenge and the titre of the virus was subsequently

reconfirmed in MDCK cells.

The rectal temperatures of all ferrets were measured daily.

Ferrets were monitored twice-daily post-challenge throughout the

course of the study for clinical signs indicative of influenza

infection (lack of activity, sneezing, nasal discharge, lack of

appetite, weight loss and pyrexia). Each animal was monitored for

up to 5 minutes by trained animal technicians. Staff were aware of

which animals were infected and any treatment received. Clinical

signs were scored using a simple matrix depending on severity.

Loss of activity was scored; 0 for normal activity levels, 1 for

reduced activity and 2 if inactive. Nasal discharge was scored 0 if

no nasal discharge was present and 1 if nasal discharge was

present. Sneezing was scored; 0 if no sneezing and 1 if ferrets were

sneezing. Loss of appetite was scored; 0 for no appetite loss and 1

for loss of appetite. Nasal washes were collected from each ferret

following sedation (as above) at days 1–6 and then at days 8, 10 12

and 14 post-challenge. For each nasal wash, 2 ml of PBS were

instilled by small multiple volumes into each nasal cavity with

expectorate collected into a beaker.

At 14 days post-challenge, ferrets in groups 2, 4 and 5 were

sacrificed. Monitoring of ferrets in groups 1, 3 and 6 continued

twice daily for days 15–20 post-challenge. At day 21 post-

challenge ferrets were sedated as before and inoculated intrana-

sally with 106 TCID50 A/Cal in a 500 ml inoculum. Ferrets were

monitored for a further seven days twice daily for clinical signs of

influenza infection. At 28 days post the first challenge all ferrets in

groups 1, 3, 5 and 7 were sacrificed, and blood and tissue samples

taken as before.

PCR assays
RNA was extracted from nasal washes with QIAamp mini RNA

kit (Qiagen) and quantitative real time PCR performed to

quantitate virion-sense RNA using an ABI prism 7000 [24]. We

used the primers and probe: 244 1F (59 CTCTTTGCCCA-

GAATGAGGAAT 39), 244 1R (59 CATAATCAAGAAGTACA-

CATCAGGAAGAC 39) and probe (59 FAM-

CCCTCAGTCTTCTCC 39). Primers were synthesized by

Invitrogen, and the probes by ABI. Reverse transcriptase reactions

(10 ml) were performed using 6 ml extracted RNA, RevertAid

reverse transcriptase and random hexamer (Fermentas) were used

according to the manufacturer’s instructions. cDNA (1 ml) was

used in 20 ml of PCR reaction. A virion-sense 244 RNA standard

was made by subcloning PCR products of full length 244 RNA in

pGEMT-easy vector (Promega). RNA was transcribed using the

T7 RNA polymerase (MEGAscript, Ambion), the mix digested

with DNase I, and RNA purified by electro-elution. After ethanol

precipitation, RNA was resuspended into RNase-free water and

quantitated using a Nanodrop 1000 (Thermoscientific, Wilming-

ton, DE). Standard curves were generated by performing 10-fold

serial dilutions of known RNA copy numbers with each dilution

assayed in duplicate. The reaction was conducted at 50uC for

2 min, 95uC for 10 min, then 40 cycles of 94uC for 15 sec

followed by 60uC for 1 min.

Infectivity assay
Nasal washes from each ferret were titrated for A/Cal infectivity

in a focus-forming assay using MDCK cells in 96-well plates in

triplicate. After infection cells were incubated at 33uC for

18 hours, fixed overnight at 4uC with 1:1 methanol: acetone,

and blocked with 5% w/v milk powder in PBS. Virus-positive cells

were detected using a mouse monoclonal antibody (9G8, Abcam)

that recognises the NP protein of influenza A viruses, and a goat

anti-mouse IgG-alkaline phosphatase conjugate (Sigma), both in

buffered saline containing 0.1% v/v Tween, and finally incubated

with an alkaline phosphatase substrate (NBT/BCIP in TMN

buffer; Sigma). At least 50 stained cells (foci) at an appropriate

dilution were counted in each of three wells and averaged to give a

titre in focus-forming units (FFU) per ferret. Assays carried out on

different days were normalized to a standard A/Cal virus

preparation. Variation in the standard was less than 4-fold.

Haemagglutination-inhibition (HI) assay
Before assay, sera were treated with receptor destroying enzyme

(RDE II (SEIKEN), Cosmos Biological) overnight at 37uC to

remove non-specific inhibitors of haemagglutination and then

incubated at 56uC for 30 min to destroy the enzyme. Serial 2-fold

dilutions of serum were incubated with 4 HAU of A/Cal for

1 hour at ambient temperature before adding chicken red blood

cells (VLA, Weybridge). The HI titre is the dilution of serum that

causes 50% inhibition of agglutination, and is interpolated

between full agglutination and no agglutination [56].

Supporting Information

Figure S1 244 DI virus (244) RNA in nasal washes.
Ferrets were infected with A/Cal on day 0 and treated with 244

DI virus or inactivated 244 DI virus as indicated. Levels of 244 DI

RNA were determined by quantitative RT-PCR. Each point

represents an individual animal. The horizontal line is the

geometric mean for each day, and the dotted line shows the limit

of detection.

(TIF)

Figure S2 Rectal temperatures in ferrets that were
rechallenged with A/Cal 21 days after initial infection.
Prior to challenge with A/Cal ferrets were treated with

A/Cal+300 mg 244 DI virus (&); A/Cal+300 mg inactivated 244

DI virus (m); saline only, and was being infected for the first time

(l). Animals were anaesthetised and rectal temperatures taken prior

to any other procedure. The mean changes in temperatures of

each group (n = 5) are expressed relative to the average
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temperature of the group immediately prior to the challenge

infection on day 0. The fever peak of the virus control occurred on

day 2 and differed significantly by a one tailed unpaired t-test from

the DI virus-treated group (*, p#0.03).

(TIF)

Figure S3 Weight changes in ferret groups rechallenged
with A/California/04/09 (H1N1) 21 days after initial
infection (day 0 on the graph). For other information see

Figure S2. Mean changes in weight of each group (n = 5) are

compared with a baseline established before infection. Animals were

anaesthetised and rectal temperatures taken prior to any other

procedure. Weights of the group originally treated with DI virus

were significantly different by a one tailed unpaired t-test from the

group treated with inactivated DI virus: *, p#0.01; **, p#0.0009.

(TIF)

Table S1 Summary of the reduction of respiratory
disease (sneezing and nasal discharge) in infected ferrets
treated with 244 DI virus or inactivated 244 DI virus.
(DOCX)

Table S2 Summary of nasal wash infectivity and 244 DI
RNA for ferrets infected with A/Cal and treated with
inactivated or active 244 DI virus.
(DOCX)

Table S3 Summary of clinical observations in the 7 days
following rechallenge of ferrets with A/Cal at 21 days
after they were first inoculated. The accumulated number of

single positive events recorded is shown for each group. There

were 14 observation periods and 5 ferrets per group, thus there

was a total of 70 ferret observations.

(DOCX)
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