2,505 research outputs found

    The transition from a coherent optical vortex to a Rankine vortex: beam contrast dependence on topological charge

    Get PDF
    Spatially coherent helically phased light beams carry orbital angular momentum (OAM) and contain phase singularities at their centre. Destructive interference at the position of the phase singularity means the intensity at this point is necessarily zero, which results in a high contrast between the centre and the surrounding annular intensity distribution. Beams of reduced spatial coherence yet still carrying OAM have previously been referred to as Rankine vortices. Such beams no longer possess zero intensity at their centre, exhibiting a contrast that decreases as their spatial coherence is reduced. In this work, we study the contrast of a vortex beam as a function of its spatial coherence and topological charge. We show that beams carrying higher values of topological charge display a radial intensity contrast that is more resilient to a reduction in spatial coherence of the source

    Compressed sensing with near-field THz radiation

    Get PDF
    We demonstrate a form of near-field terahertz (THz) imaging that is compatible with compressed sensing algorithms. By spatially photomodulating THz pulses using a set of shaped binary optical patterns and employing a 6-μm-thick silicon wafer, we are able to reconstruct THz images of an object placed on the exit interface of the wafer. A single-element detector is used to measure the electric field amplitude of transmitted THz radiation for each projected pattern, with the ultra-thin wafer allowing us to access the THz evanescent near fields to achieve a spatial resolution of ∼9  μm∼9  μm

    A compact holographic optical tweezers instrument

    Get PDF
    Holographic optical tweezers have found many applications including the construction of complex micron-scale 3D structures and the control of tools and probes for position, force, and viscosity measurement. We have developed a compact, stable, holographic optical tweezers instrument which can be easily transported and is compatible with a wide range of microscopy techniques, making it a valuable tool for collaborative research. The instrument measures approximately 30×30×35 cm and is designed around a custom inverted microscope, incorporating a fibre laser operating at 1070 nm. We designed the control software to be easily accessible for the non-specialist, and have further improved its ease of use with a multi-touch iPad interface. A high-speed camera allows multiple trapped objects to be tracked simultaneously. We demonstrate that the compact instrument is stable to 0.5 nm for a 10 s measurement time by plotting the Allan variance of the measured position of a trapped 2 μm silica bead. We also present a range of objects that have been successfully manipulated

    The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin.

    No full text
    Trypanosoma cruzi glutathione-dependent peroxidase I (TcGPXI) can reduce fatty acid, phospholipid, and short chain organic hydroperoxides utilizing a novel redox cycle in which enzyme activity is linked to the reduction of trypanothione, a parasite-specific thiol, by glutathione. Here we show that TcGPXI activity can also be linked to trypanothione reduction by an alternative pathway involving the thioredoxin-like protein tryparedoxin. The presence of this new pathway was first detected using dialyzed soluble fractions of parasite extract. Tryparedoxin was identified as the intermediate molecule following purification, sequence analysis, antibody studies, and reconstitution of the redox cycle in vitro. The system can be readily saturated by trypanothione, the rate-limiting step being the interaction of trypanothione with the tryparedoxin. Both tryparedoxin and TcGPXI operate by a ping-pong mechanism. Overexpression of TcGPXI in transfected parasites confers increased resistance to exogenous hydroperoxides. TcGPXI contains a carboxyl-terminal tripeptide (ARI) that could act as a targeting signal for the glycosome, a kinetoplastid-specific organelle. Using immunofluorescence, tagged fluorescent proteins, and biochemical fractionation, we have demonstrated that TcGPXI is localized to both the glycosome and the cytosol. The ability of TcGPXI to use alternative electron donors may reflect their availability at the corresponding subcellular sites

    Adaptive foveated single-pixel imaging with dynamic super-sampling

    Get PDF
    As an alternative to conventional multi-pixel cameras, single-pixel cameras enable images to be recorded using a single detector that measures the correlations between the scene and a set of patterns. However, to fully sample a scene in this way requires at least the same number of correlation measurements as there are pixels in the reconstructed image. Therefore single-pixel imaging systems typically exhibit low frame-rates. To mitigate this, a range of compressive sensing techniques have been developed which rely on a priori knowledge of the scene to reconstruct images from an under-sampled set of measurements. In this work we take a different approach and adopt a strategy inspired by the foveated vision systems found in the animal kingdom - a framework that exploits the spatio-temporal redundancy present in many dynamic scenes. In our single-pixel imaging system a high-resolution foveal region follows motion within the scene, but unlike a simple zoom, every frame delivers new spatial information from across the entire field-of-view. Using this approach we demonstrate a four-fold reduction in the time taken to record the detail of rapidly evolving features, whilst simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This tiered super-sampling technique enables the reconstruction of video streams in which both the resolution and the effective exposure-time spatially vary and adapt dynamically in response to the evolution of the scene. The methods described here can complement existing compressive sensing approaches and may be applied to enhance a variety of computational imagers that rely on sequential correlation measurements.Comment: 13 pages, 5 figure

    Experimental Study of Parametric Autoresonance in Faraday Waves

    Full text link
    The excitation of large amplitude nonlinear waves is achieved via parametric autoresonance of Faraday waves. We experimentally demonstrate that phase locking to low amplitude driving can generate persistent high-amplitude growth of nonlinear waves in a dissipative system. The experiments presented are in excellent agreement with theory.Comment: 4 pages, 4 eps figures, to appear in Phys. Rev. Let

    Unsolicited written narratives as a methodological genre in terminal illness: challenges and limitations

    Get PDF
    Stories about illness have proven invaluable in helping health professionals understand illness experiences. Such narratives have traditionally been solicited by researchers through interviews and the collection of personal writings, including diaries. These approaches are, however, researcher driven; the impetus for the creation of the story comes from the researcher and not the narrator. In recent years there has been exponential growth in illness narratives created by individuals, of their own volition, and made available for others to read in print or as Internet accounts. We sought to determine whether it was possible to identify such material for use as research data to explore the subject of living with the terminal illness amyotrophic lateral sclerosis/motor neuron disease—the contention being that these accounts are narrator driven and therefore focus on issues of greatest importance to the affected person. We encountered and sought to overcome a number of methodological and ethical challenges, which is our focus here
    • …
    corecore