911 research outputs found

    Evidence against memorial facilitation and context-dependent memory effects through the chewing of gum

    Get PDF
    The experiment examined the prediction that chewing gum at learning and/or recall facilitated subsequent word recall. Chewing gum at learning significantly impaired recall, indicating that the chewing of gum has a detrimental impact upon initial word encoding. In addition, a context-dependent memory effect was reported for those participants who both learned and recalled in the absence of gum, however a context dependent effect was not found with chewing gum. The findings contradict previous research

    Chewing gum and context-dependent memory: The independent roles of chewing gum and mint flavour

    Get PDF
    Two experiments independently investigated the basis of the chewing-gum induced context-dependent memory effect (Baker et al, 2004). At learning and/or recall participants either chewed flavourless gum (Experiment 1) or received mint-flavoured strips (Experiment 2). No context dependent memory effect was found with either flavourless gum or mint-flavoured strips, indicating that independently the contexts were insufficiently salient to induce the effect. This is found despite participants’ subjective ratings indicating a perceived change in state following administration of flavourless gum or mint-flavoured strips. Additionally, some preliminary evidence for a non-additive facilitative effect of receiving gum or flavour at either learning and/or recall is reported. The findings raise further concerns regarding the robustness of the previously reported context-dependent memory effect with chewing gum

    A modular, programmable measurement system for physiological and spaceflight applications

    Get PDF
    The NASA-Ames Sensors 2000! Program has developed a small, compact, modular, programmable, sensor signal conditioning and measurement system, initially targeted for Life Sciences Spaceflight Programs. The system consists of a twelve-slot, multi-layer, distributed function backplane, a digital microcontroller/memory subsystem, conditioned and isolated power supplies, and six application-specific, physiological signal conditioners. Each signal condition is capable of being programmed for gains, offsets, calibration and operate modes, and, in some cases, selectable outputs and functional modes. Presently, the system has the capability for measuring ECG, EMG, EEG, Temperature, Respiration, Pressure, Force, and Acceleration parameters, in physiological ranges. The measurement system makes heavy use of surface-mount packaging technology, resulting in plug in modules sized 125x55 mm. The complete 12-slot system is contained within a volume of 220x150x70mm. The system's capabilities extend well beyond the specific objectives of NASA programs. Indeed, the potential commercial uses of the technology are virtually limitless. In addition to applications in medical and biomedical sensing, the system might also be used in process control situations, in clinical or research environments, in general instrumentation systems, factory processing, or any other applications where high quality measurements are required

    Chewing gum modifies state-anxiety and alertness under conditions of social stress

    Get PDF
    Objectives: The finding that chewing gum can moderate state-anxiety under conditions of acute stress¹ has proved difficult to replicate.2,4 The present study examines the extent to which chewing gum can moderate state-anxiety under conditions of acute social stress. Method: In a between-participants design, 36 participants completed a task comprising a mock job interview (a variation on the Trier Social Stress Task3, which included a mental arithmetic component) whilst either chewing gum or without gum. Self-rated measures of mood and anxiety were taken at baseline, after a 10-minute presentation preparation stage, after the 10-minute presentation, and following a 5-minute recovery stage. Results: Post-presentation measures reflected increased state-anxiety and decrease self-rated calmness and contentedness. Chewing gum attenuated the rise in state-anxiety whilst increasing self-rated alertness. Chewing gum did not affect contentedness or calmness. Conclusions: The findings indicate that chewing gum can act to reduce anxiety under conditions of acute social stress: a finding consistent with Scholey et al.1 Furthermore, the data add to the growing body of literature demonstrating that chewing gum can increase alertness.1,2,4,

    Isolated pores dissected from human two-pore channel 2 are functional.

    Get PDF
    Multi-domain voltage-gated ion channels appear to have evolved through sequential rounds of intragenic duplication from a primordial one-domain precursor. Whereas modularity within one-domain symmetrical channels is established, little is known about the roles of individual regions within more complex asymmetrical channels where the domains have undergone substantial divergence. Here we isolated and characterised both of the divergent pore regions from human TPC2, a two-domain channel that holds a key intermediate position in the evolution of voltage-gated ion channels. In HeLa cells, each pore localised to the ER and caused Ca2+ depletion, whereas an ER-targeted pore mutated at a residue that inactivates full-length TPC2 did not. Additionally, one of the pores expressed at high levels in E. coli. When purified, it formed a stable, folded tetramer. Liposomes reconstituted with the pore supported Ca2+ and Na+ uptake that was inhibited by known blockers of full-length channels. Computational modelling of the pore corroborated cationic permeability and drug interaction. Therefore, despite divergence, both pores are constitutively active in the absence of their partners and retain several properties of the wild-type pore. Such symmetrical 'pore-only' proteins derived from divergent channel domains may therefore provide tractable tools for probing the functional architecture of complex ion channels.This work was supported by BBSRC studentship BB/J014567 (CJP) and BBSRC grants BB/L006790 (BAW), BB/J019135 (BAW), BB/N01524X (SP) and BB/K000942 (SP). TR was supported by Royal Society grants RG69132 and RG65196. The SRCD studies were enabled by beamtime grants from the Soleil Synchrotron, France (to BAW)

    Chewing gum benefits sustained attention in the absence of task degradation.

    Get PDF
    OBJECTIVES: The present study examined the effect of chewing gum on sustained attention and associated changes in subjective alertness. METHODS: In a within-participants design, 20 participants completed an extended version of the sustained attention response task (SART: Robertson et al., 1997), both with and without chewing gum. Self-rated measures of alertness, contentedness, and calmness were taken before and after the SART. RESULTS: Chewing gum was associated with improved attentional task performance. This finding was not contingent upon a general decrease in attentional performance and was apparent at all stages of the task. Subjective measures of alertness, contentedness, and calmness were higher following the chewing of gum. Changes in sustained attention co-varied with subjective alertness. DISCUSSION: The effects of chewing gum on attention and alertness are consistent with past literature and were not contingent on declines in attention. Additionally, we found evidence that gum-induced changes in self-rated alertness and attention are related. We found no support for the proposition that chewing gum can impair attention due to the division of resources

    SIGGRAPH

    Get PDF
    The current state of the art in real-time two-dimensional water wave simulation requires developers to choose between efficient Fourier-based methods, which lack interactions with moving obstacles, and finite-difference or finite element methods, which handle environmental interactions but are significantly more expensive. This paper attempts to bridge this long-standing gap between complexity and performance, by proposing a new wave simulation method that can faithfully simulate wave interactions with moving obstacles in real time while simultaneously preserving minute details and accommodating very large simulation domains. Previous methods for simulating 2D water waves directly compute the change in height of the water surface, a strategy which imposes limitations based on the CFL condition (fast moving waves require small time steps) and Nyquist's limit (small wave details require closely-spaced simulation variables). This paper proposes a novel wavelet transformation that discretizes the liquid motion in terms of amplitude-like functions that vary over space, frequency, and direction, effectively generalizing Fourier-based methods to handle local interactions. Because these new variables change much more slowly over space than the original water height function, our change of variables drastically reduces the limitations of the CFL condition and Nyquist limit, allowing us to simulate highly detailed water waves at very large visual resolutions. Our discretization is amenable to fast summation and easy to parallelize. We also present basic extensions like pre-computed wave paths and two-way solid fluid coupling. Finally, we argue that our discretization provides a convenient set of variables for artistic manipulation, which we illustrate with a novel wave-painting interface
    • …
    corecore