96 research outputs found

    HER1-Targeted 86Y-Panitumumab Possesses Superior Targeting Characteristics than 86Y-Cetuximab for PET Imaging of Human Malignant Mesothelioma Tumors Xenografts

    Get PDF
    Malignant mesothelioma (MM), a rare form of cancer is often associated with previous exposure to fibrous minerals, such as asbestos. Asbestos exposure increases HER1-activity and expression in pre-clinical models. Additionally, HER1 over-expression is observed in the majority of MM cases. In this study, the utility of HER1-targeted chimeric IgG(1), cetuximab, and a human IgG(2), panitumumab, radiolabeled with (86)Y, were evaluated for PET imaging to detect MM non-invasively in vivo, and to select an antibody candidate for radioimmunotherapy (RIT).Radioimmunoconjugates (RICs) of cetuximab and panitumumab were prepared by conjugation with CHX-A''-DTPA followed by radiolabeling with (86)Y. The HER1 expression of NCI-H226, NCI-H2052, NCI-H2452 and MSTO-211H human mesothelioma cells was characterized by flow cytometry. In vivo biodistribution, pharmacokinetic analysis, and PET imaging were performed in tumor bearing athymic mice.In vivo studies demonstrated high HER1 tumor uptake of both RICs. Significant reduction in tumor uptake was observed in mice co-injected with excess mAb (0.1 mg), demonstrating that uptake in the tumor was receptor specific. Significant differences were observed in the in vivo characteristics of the RICs. The blood clearance T(Β½)Ξ± of (86)Y-cetuximab (0.9-1.1 h) was faster than (86)Y-panitumumab (2.6-3.1 h). Also, the tumor area under the curve (AUC) to liver AUC ratios of (86)Y-panitumumab were 1.5 to 2.5 times greater than (86)Y-cetuximab as observed by the differences in PET tumor to background ratios, which could be critical when imaging orthotopic tumors and concerns regarding radiation doses to normal organs such as the liver.This study demonstrates the more favorable HER1-targeting characteristics of (86)Y-panitumumab than (86)Y-cetuximab for non-invasive assessment of the HER1 status of MM by PET imaging. Due to lower liver uptake, panitumumab based immunoconjugates may fare better in therapy than corresponding cetuximab based immunoconjugates

    Pre-Clinical Evaluation of a 213Bi-Labeled 2556 Antibody to HIV-1 gp41 Glycoprotein in HIV-1 Mouse Models as a Reagent for HIV Eradication

    Get PDF
    Any strategy for curing HIV infection must include a method to eliminate viral-infected cells. Based on our earlier proof-of-principle results targeting HIV-1 infected cells with radiolabeled antibody (mAb) to gp41 viral antigen, we embarked on identifying a suitable candidate mAb for preclinical development.Among the several human mAbs to gp41 tested, mAb 2556 was found to have high affinity, reactivity with multimeric forms of gp41 present on both the surface of virus particles and cells expressing HIV-1 Env, and recognition of a highly conserved epitope of gp41 shared by all HIV-1 subtypes. Also, mAb 2556 was the best in competition with HIV-1+ serum antibodies, which is an extremely important consideration for efficacy in the treatment of HIV patients. When radiolabeled with alpha-emitting radionuclide 213-Bismuth ((213)Bi) - (213)Bi-2556 efficiently and specifically killed ACH-2 human lymphocytes chronically infected with HIV-1, and HIV-1 infected human peripheral blood mononuclear cells (hPBMCs). The number of binding sites for (213)Bi-2556 on the surface of the infected cells was >10(6). The in vivo experiments were performed in two HIV-1 mouse models--splenic and intraperitoneal. In both models, the decrease in HIV-1 infected hPBMCs from the spleens and peritoneum, respectively, was dose-dependent with the most pronounced killing of hPBMCs observed in the 100 Β΅Ci (213)Bi-2556 group (P = 0.01). Measurement of the blood platelet counts and gross pathology of the treated mice demonstrated the lack of toxicity for (213)Bi-2556.We describe the preclinical development of a novel radiolabeled mAb reagent that could potentially be part of an HIV eradication strategy that is ready for translation into the clinic as the next step in its development. As viral antigens are very different from "self" human antigens - this approach promises high selectivity, increased efficacy and low toxicity, especially in comparison to immunotoxins

    Treating Cancer as an Infectious Diseaseβ€”Viral Antigens as Novel Targets for Treatment and Potential Prevention of Tumors of Viral Etiology

    Get PDF
    Nearly 20% of human cancers worldwide have an infectious etiology with the most prominent examples being hepatitis B and C virus-associated hepatocellular carcinoma and human papilloma virus-associated cervical cancer. There is an urgent need to find new approaches to treatment and prevention of virus-associated cancers.Viral antigens have not been previously considered as targets for treatment or prevention of virus-associated cancers. We hypothesized that it was possible to treat experimental HPV16-associated cervical cancer (CC) and Hepatitis B-associated hepatocellular carcinoma (HCC) by targeting viral antigens expressed on cancer cells with radiolabeled antibodies to viral antigens. Treatment of experimental CC and HCC tumors with (188)Re-labeled mAbs to E6 and HBx viral proteins, respectively, resulted in significant and dose-dependent retardation of tumor growth in comparison with untreated mice or mice treated with unlabeled antibodies.This strategy is fundamentally different from the prior uses of radioimmunotherapy in oncology, which targeted tumor-associated human antigens and promises increased specificity and minimal toxicity of treatment. It also raises an exciting possibility to prevent virus-associated cancers in chronically infected patients by eliminating cells infected with oncogenic viruses before they transform into cancer

    Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery

    Get PDF
    • …
    corecore