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Abstract

Purpose: The purpose of this study was to identify suitable molecular targets for tumor-specific
imaging of pancreatic adenocarcinoma.

Procedures: The expression of eight potential imaging targets was assessed by the target
selection criteria (TASC)—score and immunohistochemical analysis in normal pancreatic tissue
(n=9), pancreatic (n=137), and periampullary (n=28) adenocarcinoma.

Results: Integrin a,Be, carcinoembryonic antigen (CEA), epithelial growth factor receptor
(EGFR), and urokinase plasminogen activator receptor (UPAR) showed a significantly higher
(all p<0.001) expression in pancreatic adenocarcinoma compared to normal pancreatic tissue
and were confirmed by the TASC score as promising imaging targets. Furthermore, these
biomarkers were expressed in respectively 88 %, 71 %, 69 %, and 67 % of the pancreatic
adenocarcinoma patients.

Conclusions: The results of this study show that integrin a,8s, CEA, EGFR, and uPAR are
suitable targets for tumor-specific imaging of pancreatic adenocarcinoma.
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Introduction resection margins of the surgical specimen) are associ-

ated with a dramatic decrease in median overall survival
Pancreatic adenocarcinoma currently ranks the fourth [1-4]. Unfortunately, positive resection margins are
leading cause of cancer-related death in the Western common after pancreatic surgery and reported rates vary
world, with a 5-year survival rate of less than 5 % [1]. between 24 % and 76 % [5-7]. Adjuvant therapy cannot
Radical surgical tumor resection is imperative to curative  petaliate the poor survival outcome associated with
treatment of these patients as positive resection margins  regidual disease [8]. The disappointing irradical resection
(defined as tumor cells present at the surface of the  rates after pancreatic surgery are due to our current

inability to detect the true delineation of the tumor extent
- during surgery, which is further complicated by the
Correspondence to: Peter Kuppen; e-mail: p.j.k.kuppen@lumc.nl intricate anatomy of the pancreas and the commonly
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present peritumoral inflammatory zone in pancreatic
cancer. Conventional anatomic imaging modalities used
for preoperative diagnosis, staging, and surgical planning
include multiphase intravenous contrast-directed thin slice
computed tomography, magnetic resonance imaging,
endoscopic ultrasonography, and endoscopic retrograde
cholangiopancreatography [9, 10]. However, the transla-
tion of these preoperative imaging techniques to the
surgical field remains challenging and in the theater, the
surgical oncologist solely has to rely on vision and
manual palpation to discriminate between malignant and
healthy pancreatic tissue, assisted by ultrasonography and
pathologic evaluation of frozen tissue sections [10].

Intraoperative tumor-specific imaging offers the op-
portunity to significantly improve current practice by
increasing the capability to obtain negative resection
margins and visualize residual disease during pancreatic
surgery. This novel imaging approach uses labeled
receptor ligands, nanoparticles, antibodies, or antibody
fragments targeting cancer-specific antigens on the tumor
surface detected by positron emission tomography,
single-photon emission computed tomography, ultraso-
nography, magnetic resonance, and/or near-infrared fluo-
rescence imaging modalities [11-13]. The feasibility of
these imaging techniques has already successfully been
proven in glioma and ovarian cancer surgery using
respectively the fluorescent agents S-aminolevulinic acid
and folate conjugated to fluorescein isothiocyanate [11,
14]. Furthermore, the potential of image-guided surgery
in pancreatic adenocarcinoma has been demonstrated by
numerous preclinical studies using cancer-specific con-
trast agents targeting integrin o,f, carcinoembryonic
antigen (CEA), epithelial growth factor receptor
(EGFR), human epidermal growth factor receptor
(HER2), urokinase plasminogen activator receptor
(uPAR), or vascular endothelial growth factor receptor
2 (VEGFR2) among others (Table 1). Nevertheless, the
orthotopic mouse models used in these studies are based
on a small number of pancreatic adenocarcinoma cell
lines originating from single patients and therefore less
representative for the potential of these imaging probes
in the overall population of pancreatic cancer patients.
The translation from bench to bedside of this promising
imaging strategy for pancreatic adenocarcinoma currently
hinges on the lack of tumor-specific and thoroughly
evaluated molecular targets expressed on the general
population of pancreatic adenocarcinoma patients for the
further development of tumor-targeting contrast agents
[15, 16].

Therefore, the aim of this study was to explore the
suitability of integrin a,fs, CEA, hepatocyte growth factor
receptor (cMET), EGFR, epithelial cell adhesion molecule
(EpCAM), HER2, uPAR, and VEGFR2 as molecular targets
for tumor-targeted imaging of pancreatic adenocarcinoma
patients. The primary endpoint of this study was to evaluate
the ability of these markers to distinguish between normal

pancreatic tissue and pancreatic and periampullary adeno-
carcinoma by performing immunohistochemistry on surgical
specimen of these malignancies and normal pancreatic tissue
obtained adjacent to the tumor. In addition, these biomarkers
were judged on the Target Selection Criteria (TASC)
proposed by Van Oosten et al. [17].

Materials and Methods

Patient Selection

Medical records and pathology specimens of 137 patients
with pancreatic ductal adenocarcinoma and 28 patients with
periampullary adenocarcinoma who underwent pancreatic
surgery at Leiden University Medical Center (LUMC)
between June 2002 and July 2012 were retrospectively
reviewed. Periampullary adenocarcinoma were included to
assess the potential of tumor-specific imaging targets to
visualize every pancreatic head mass, since preoperative
differentiation between pancreatic, distal bile duct, ampul-
lary, and duodenal adenocarcinoma can be challenging [18].
For the purpose of this study, periampullary adenocarcinoma
was defined as adenocarcinoma that invades the pancreas
arising from the ampulla of Vater, duodenum, or distal bile
duct [19]. Patients who received any form of neoadjuvant
chemotherapy and/or radiotherapy were excluded from this
study, since this may influence the expression of molecular
markers [20]. In addition, normal pancreatic tissue adjacent
to the tumor was also obtained from nine patients to evaluate
the tumor specificity of the biomarkers. Clinicopathological
data from these patients were retrospectively collected from
electronic hospital records. Tumor differentiation grade was
determined according to the guideline of the World Health
Organization, and the TNM stage was defined according to
the American Joint Commission on Cancer criteria [21]. All
samples were nonidentifiable and used in accordance with
the ethical standards of the institutional research committee
and with the 1964 Helsinki declaration and its later
amendments.

Immunohistochemistry

Tissue microarrays (TMAs) of tumor and normal tissues
were constructed to perform uniform and simultaneous
immunohistochemical stainings to limit intra-assay vari-
ations. Formalin-fixed paraffin-embedded tissue blocks of
the primary tumor were collected from the archives of
the Pathology Department. A single representative block
was selected for each patient based on hematoxylin-
eosin-stained sections. From each donor block, triplicate
2.0-mm cores were punched from areas with clear
histopathological tumor representation and transferred to
a recipient TMA block using the TMA Master
(3DHISTECH, Budapest, Hungary). From each com-
pleted TMA block and normal pancreatic tissue block,
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Table 1. Overview of the characteristics and preclinical experience with tumor-specific imaging of integrin o,fs, carcinoembryonic antigen (CEA),
hepatocyte growth factor receptor (¢(MET), epithelial growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), human epidermal growth
factor receptor (HER2), urokinase plasminogen activator receptor (uPAR), and vascular endothelial growth factor receptor 2 (VEGFR2) in pancreatic
adenocarcinoma animal models

Target Type of receptor Function Tumor-specific probe Imaging Pancreatic Ref.
(family) modality cancer
xenograft
Integrin ~ Transmembrane Controls extracellular Peptide '8 E_fluorobenzoic PET BxPC-3 [64, 65]
oyBe receptor matrix remodeling and acid
(integrin family provides the traction Peptide 99mTC SPECT/CT BxPC-3 [66]
of cell adhesion necessary for Peptide Phthalocyanine NIRF BxPC-3 [67]
receptors) cell motility. Tumor dye imaging
[63] cell migration, invasion, Peptide 18p.
and proliferation [63]
fluorobenzoate PET BxPC-3 [68]
CEA Glycoprotein Tumor cell migration, scFv 800CW NIRF BxPC-3 [71]
(immunoglobulin circulation, implantation imaging
superfamily) [69] and proliferation, MAB IR700 NIRF BxPC-3 [72]
which is facilitated imaging
by the immunosuppressive MAB AlexaFluor 488  NIRF BxPC-3 [73-77]
effect of CEA [70] imaging
scFv ' PET/CT BxPC-3 [78]
cMET Tyrosine kinase Tumor cell proliferation, - - - - -
receptor survival, motility,
(HGFR family) and invasion [79]
[79]
EGFR Tyrosine kinase Induces tumor cell F(ab’), fragments %Cu PET/CT PANC-
receptor differentiation 1
(ErbB family) and proliferation [81] [82]
[80] MAB CF-750 MSOT MiaPaCa-2 [83]
scFv IONP MRI MiaPaCa-2 [84, 85]
XIMAB soy PET SHAW [86]
EpCAM Transmembrane Tumor cell proliferation, — — - -
glycoprotein migration,
[87] and
mitogenic
signal
transduction
[87]
HER2 Tyrosine kinase Tumor cell proliferation, MAB My PET PC-Sw [89]
receptor survival, adhesion,
(ErbB family) and migration [88]
[88]
uPAR GPI-anchored Tumor cell migration, ATF-uPA NIR-830, NIRF MiaPaCa-2 [84,
receptor proliferation, IONP imaging, 91-
(plasminogen and survival [90] MRI 93]
activation system) MAB Cy5.5 NIRF AsPC-1 [94]
[71] imaging
VEGFR2 Tyrosine kinases receptor Angiogenesis MAB Microbubbles us
(VEGFR family) [95] during
tumorgenesis
[95]

Transgenic mouse
model

[96-98]

ATF amino terminal fragement, CT computed tomography, FDA Food and Drug Administration, HGFR hepatocyte growth factor receptor, M4B monoclonal
antibody, MPIO microparticles of iron oxide, MSOT multispectral optoacoustic tomography N/RF near-infrared fluorescence, NP/O nanoparticles of iron
oxide, PC pancreatic cancer, PET positron emission tomography, scFv single-chain antibody fragments, SPECT single-photon emission computed
tomography, u#PA urokinase plasminogen activator, US ultrasound, VEGF vascular endothelial growth factor, VEGFR vascular endothelial growth factor
receptor, XIMAB chimeric human-mouse antibodies

S-um sections were sliced. The sections were
deparaffined in xylene and rehydrated in serially diluted
alcohol solutions, followed by demineralized water
according to standard protocols. Endogenous peroxidase
was blocked by incubation in 0.3 % hydrogen peroxide
in phosphate-buffered saline (PBS) for 20 min. For

EpCAM, c¢-MET, HER2, and uPAR staining antigen
retrieval was performed by heat induction at 95 °C using
PT Link (Dako, Glostrup, Denmark) with a low-pH
Envision FLEX target retrieval solution (citrate buffer pH
6.0, Dako). VEGFR staining required antigen retrieval
with high-pH Envision FLEX target retrieval solution
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(Tris-EDTA pH 9.0, Dako). For staining of EGFR and
integrin o,fe, antigen retrieval was performed with 0.4 %
pepsin incubation for 10 min at 37 °C. CEA staining did
not require antigen retrieval. Immunohistochemical stain-
ing was performed by incubating tissue microarrays
overnight with antibodies against VEGFR2 (55B11; Cell
Signaling Technology, Danvers, MA, USA), EpCAM
(323A3, in-house produced hybridoma), c-MET (SC10;
Santa Cruz Biotechnology, Santa Cruz, CA, USA), CEA
(A0155; Dako, Glustrup, Denmark), EGFR (E30; Dako),
integrin o,P¢ (6.2A; Biogen Idec MA Inc., Cambridge,
MA, USA), HER2 (A0485; Dako), and uPAR (ATN-615,
kindly provided by Prof A.P. Mazar, Northwestern
University, Evanston, IL) all at room temperature [22,
23]. All antibodies were used at predetermined optimal
dilutions using proper positive and negative control
tissue. Furthermore, all antibodies selected for this study
were solely selective for integrin a,B¢, CEA, cMET,
EGFR, EpCAM, HER2, uPAR, and VEGFR respectively,
except for the CEA antibody (AO0155; Dako) that was
also sensitive to CEA-like proteins (CEACAMI,
CEACAM3, CEACAM4, CEACAM 6, CEACAMT7,
CEACAM 8) and the uPAR antibody (ATN-615) that
also recognizes the soluble form of uPAR suPAR [22].
Negative control samples were incubated with PBS
instead of the primary antibodies. The sections were
washed with PBS, followed by incubation with Envision
anti-mouse (K4001; Dako) or Envision anti-Rabbit
(K4003; Dako), where applicable, for 30 min at room
temperature. After additional washing, immunohistochem-
ical staining was visualized using 3,3-diaminobenzidine
tertahydrochloride solution (Dako) for 5-10 min resulting
in brown color and counterstained with hematoxylin,
dehydrated, and finally mounted in pertex. All stained
sections were scanned and viewed at x40 magnification
using the Philips Ultra Fast Scanner 1.6 RA (Philips,
Eindhoven, Netherlands). The numerical value for overall
intensity (intensity score) was based on a four-point
system: 0, 1, 2, and 3 (for none, light, medium, or high
intense staining), as previously described by Choudhury
et al., and staining was considered positive if >10 % of
the tumor cells expressed a medium or dark staining
pattern [23-29]. Evaluation of the immunohistochemical
staining of all molecular targets was performed blinded
and independently by two observers (S.W.L.G. and
H.A.JM.P). In case of disagreement, the stainings were
discussed until agreement was reached.

Target Selection Criteria

The TASC score is based on granting points for the
following seven characteristics of suitable molecular targets:
extracellular protein localization (receptor bound to cell
surface, 5 points; in close proximity of the tumor cell, 3
points); diffuse upregulation through tumor tissue (4 points);
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tumor-to-healthy cell (T/N) ratio (T/N ratio >10, 3 points);
high percentage upregulation in patients (>90 %, 6 points;
70-90 %, 5 points; 50-69 %, 3 points; 10-49 %, 0 points);
previous imaging success in vivo (2 points); enzymatic
activity (1 point); and target-mediated internalization (1
point). All biomarkers were granted points for the seven
characteristics and a total score of 18 or higher indicated that
the biomarker is potentially suitable for tumor-targeted
imaging in vivo [17]. Whereas a T/N ratio could not be
obtained from immunohistochemical staining, we simplified
the T/N ratio to a significant lower staining intensity in
normal pancreatic tissue compared to pancreatic and
periampullary adenocarcinoma. For the purpose of this
study, diffuse expression was defined as staining in >50 %
of tumor cells in the majority (>50 %) of the patients; focal
expression as staining in <50 % of tumor cells in the
majority (>50 %) of the patients and negative expression as
staining in 0 % of the tumor cells in the majority (>50 %) of
the patients.

Statistical Analysis

The statistical analysis was performed using SPSS
version 23.0 software (SPSS, © IBM Corporation, Somer
NY, USA) and GraphPad Prism 6 (GraphPad, Software,
Inc., La Jolla, CA, USA). Interobserver variation of
immunohistochemical results was analyzed using Cohen’s
kappa coefficient, and >0.8 was considered as acceptable.
Baseline characteristics between groups were analyzed
using chi-squared test for categorical data. Immunohisto-
chemistry staining intensity in normal pancreatic tissue
was compared to pancreatic and periampullary adenocar-
cinoma using the independent Student’s ¢ test. In all
tests, results were considered statistically significant at
the level of p<0.05.

Results
Patient and Tumor Characteristics

In total, 165 patients were included, whereof 137 and 28
with pancreatic and periampullary adenocarcinoma, re-
spectively (Table 2). The mean age was 66 years and
ranged between 38 and 84 years. Most tumors were T-
stage 3 (50.9 %) and poorly differentiated (44.6 %).
Regional lymph node involvement was found in 69.7 %
of patients. The majority of the patients received no
adjuvant therapy after surgery. Patients diagnosed with
adenocarcinoma originating from the pancreas had,
compared to patients diagnosed with periampullary
adenocarcinoma, more frequently lymph node invasion
(75 vs. 43 %; p<0.001), positive surgical margins (31
vs. 11 %; p=0.037), vascular invasion (33 vs. 11 %;
p=0.023), perineural invasion (64 vs. 37 %; p=0.011),
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Table 2. Baseline characteristics for the patients with pancreatic and periampullary adenocarcinoma included in this study

Characteristics Total population (n = 165) Pancreatic adenocarcinoma (n = 137) Periampullary adenocarcinoma (n = 28)  p-value

Age, n (%)
<65 years 76 (46.1 %) 66 (48.2 %) 10 (35.6 %) 0.228
>65 years 89 (53.9 %) 71 (51.8 %) 18 (64.3 %)

Gender, n (%)
Male 80 (48.5 %) 66 (48.2 %) 14 (50.0 %) 0.860
Female 85 (51.5 %) 71 (51.8 %) 14 (50.0 %)

Tumor location, n (%)
Pancreatic head 155 (93.9 %) 127 (92.7 %) 28 (100.0 %) -
Other 10 (6.1 %) 10 (7.3 %) -

Tumor differentiation, n (%)
Well differentiated 17 (13.3 %) 12 (8.8 %) 5(17.9 %) 0.224
Moderately differentiated 54 (42.2 %) 43 (31.4 %) 11 (39.3 %)
Poorly/undifferentiated 57 (44.6 %) 45 (32.8 %) 12 (42.8 %)
Missing 37 37 -

Tumor size, n (%)
<30 mm 97 (59.9 %) 77 (57.5 %) 20 (71.4 %) 0.170
>30 mm 65 (40.1 %) 57 (42.5 %) 8 (28.6 %)
Missing 3 3 -

Primary tumor, n (%)
pT1 31 (18.8 %) 21 (15.3 %) 10 (35.7 %) 0.071
pT2 40 (24.2 %) 36 (26.3 %) 4 (143 %)
pT3 84 (50.9 %) 72 (52.6 %) 12 (42.9 %)
pT4 10 (6.1 %) 8 (5.8 %) 2 (7.1 %)

Regional lymph node, n (%)
pNO 50 (30.3 %) 34 (24.8 %) 16 (57.1 %) <0.001
pN1 115 (69.7 %) 103 (75.2 %) 12 (42.9 %)

Surgical margin status, n (%)
RO 119 (72.6 %) 95 (69.3 %) 24 (88.9 %) 0.037
R1 45 (27.4 %) 42 (30.7 %) 3 (11.1 %)

Adjuvant therapy, n (%)
Yes 70 (42.4 %) 68 (49.6 %) 2 (7.1 %) <0.001
No 95 (57.6 %) 69 (50.4 %) 26 (92.9 %)

Vascular invasion, n (%)
Positive 48 (29.3 %) 45 (32.8 %) 3 (11.1 %) 0.023
Negative 116 (70.7 %) 92 (67.2 %) 24 (88.9 %)

Perineural invasion, n (%)
Positive 97 (59.1 %) 87 (63.5 %) 10 (37.0 %) 0.011
Negative 67 (40.9 %) 50 (36.5 %) 17 (63.0 %)

*p Value was obtained for patients with pancreatic adenocarcinoma compared to periampullary adenocarcinoma patients, and p <0.05 was considered

significant

and received more often adjuvant therapy (50 vs. 7 %;
p<0.001).

Biomarker Expression

Of the 165 pancreatic and periampullary adenocarcinoma
specimens collectively present on the TMA, 159 speci-
mens (96 %) could successfully be microscopically
quantified for integrin o,Bs expression, 158 (96 %) for
CEA, 159 (96 %) for cMET, 156 (95 %) for EGFR, 151
(92 %) for EpCAM, 152 (92 %) for HER2, 155 (94 %)
for VEGFR2, and 152 (92 %) for uPAR. The missing
cases were due to staining artifacts, excessive necrotic
tissue, or unacceptable tissue loss during the staining
procedure. The molecular markers showed mainly mem-
branous and cytoplasmic immunoreactivity in pancreatic
and periampullairy adenocarcinoma cells; CEA and
uPAR also showed stromal immunoreactivity (Fig. 1).

Diffuse membranous staining was found for integrin
ayBs, CEA, cMET, EGFR, HER2, and uPAR in
pancreatic adenocarcinoma (Table 3) and integrin o,
CEA, cMET, EGFR, EpCAM, HER2, and VEGFR2 in
periampullary adenocarcinoma (Table 4). Immunohisto-
chemistry staining, if present, in healthy pancreatic tissue
was predominantly localized in the acinar cells of the
pancreas. The most frequently expressed biomarkers were
integrin o,fs and cMET that were both expressed in
88 % of the pancreatic adenocarcinoma cases (Table 3).
In addition, cMET was abundantly expressed in 96 % of
the periampullary adenocarcinoma patients (Table 4). To
evaluate the ability of potential tumor-specific molecular
markers to distinguish between pancreatic adenocarci-
noma and healthy pancreatic tissue, the mean immuno-
histochemical intensity scores of the biomarkers were
compared between both tissue types. In pancreatic
adenocarcinoma, the mean intensity score for integrin
aBs (<0.001; p<0.001), CEA (p<0.001; p<0.001),



812 S.W.L. de Geus et al.: Selecting Tumor-Specific Molecular Targets

Pancreatic adenocarcinoma Normal pancreatic tissue Percentage patients Staining intensity
(PDA) (NPT) with positive
ol J SR IR e S A expression >4
@ ) 3
S =el 88% $3| - .
£ 4 68% €
2 : € 1
=1 0% &
0
5 NPT PDA PA NPT
’ >4
89% £3 .
ﬁ <
o 22
<
0% & ;
NPT PDA PA NPT
24
o
- sgy, 96% 100% §3
w c
c | i -
€
T 1
(2]
0
>4 PDA PA NPT
2
23
E 69% o S
o 59% =2
w S
C
c1
e ——
0
PDA PA NPT
24
= 8% 53
3 70% < i
o o
®1
(%]
0
PDA PA NPT PDA PA NPT
>
929 100% @ )
g 23
c
i 5 W
4 22| muum
g1
(2]
0
PDA  PA NPT PDA PA NPT
24
Y &P ," 23
S Vs o™ s 67% 2 -
% ¢ % N o2 é
3 {=4
% £
o
0% &
LN -
PDA PA NPT >4 PDA PA NPT
a
& 33
0,
% 67% 599 s,
w i £
2| L
; "% &
Fodi 0
PDA PA NPT PDA PA NPT

Fig. 1 Representative images of moderate immunohistochemistry staining in pancreatic adenocarcinoma (left column) and
absent or present immunohistochemistry expression in pancreatic adenocarcinoma (second left column), followed by bar
charts (third left column) displaying the percentage of PAC patients with positive staining (positive staining was defined as
moderate or strong expression in >10 % of tumor cells) and boxplots (right column) showing the mean immunohistochemistry
staining (staining intensity was classified for every patient as followed: 0 = negative, 1 = weak, 2 = moderate, and 3 = strong) in
pancreatic adenocarcinoma (PDA), periampullary adenocarcinoma (PA), and normal pancreatic tissue (NPT) for integrin a,fe,
carcinoembryonic antigen (CEA), hepatocyte growth factor receptor (CMET), epithelial growth factor receptor (EGFR), epithelial
cell adhesion molecule (EpCAM), human epithelial growth factor receptor (HER2), urokinase receptor (UPAR), and vascular
endothelial growth factor receptor 2 (VEGFR2) expression. *Significant difference in staining intensity (defined as p value of
0.05) in pancreatic or periampullary adenocarcinoma compared to normal pancreatic tissue.
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Table 3. Target Selection Criteria (TASC) score for integrin a,fs, carcinoembryonic antigen (CEA), hepatocyte growth factor receptor (c(MET), epithelial
growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor (HER2), urokinase receptor (uPAR), and
vascular endothelial growth factor receptor 2 (VEGFR2) in pancreatic adenocarcinoma

Target Extracellular Pattern of T/Nratio  Percentage with Previous imaging ~ Enzymatic Internalization TASC
localization of the  upregulation (points positive expression success (points activity (points  (points Score
protein (points (points awarded)  (points awarded) awarded) awarded) awarded)
awarded) awarded)

Integrin Membrane-bound  Diffuse (4) Yes (3) 88 % (5) Animal No (0) [100] Yes (1) [65] 20

oyPe (3) [99] experiment (2)
[68]
CEA Membrane-bound  Diffuse (4) Yes (3) 71 % (5) Animal Unknown (0) Yes (1) [102] 20
(3) [101] experiment (2)
[74, 77]
UPAR Membrane-bound  Diffuse (4) Yes (3) 67% (3) Animal Yes (1) [103] Yes (1) [104] 19
3) [71] experiment (2)
[91]
cMET Membrane-bound  Diffuse (4) No (0) 88% (5) Animal Yes (1) [107] Yes (1) [108] 18
(3) [105] experiment (2)
[106]
EGFR Membrane-bound  Diffuse (4) Yes (3) 69% (3) In patients (2) Unknown (0) Yes (1) [111] 18
(3) [109] [86, 110]
HER2 Membrane-bound  Diffuse (4) No (0) 80% (5) Animal Unknown (0) Yes (1) [113] 17
(3) [112] experiment (2)
[89]
VEGFR2  Membrane-bound  Focal (0) No (0) 72% (5) Animal Yes (1) [116] Yes (1) [117] 14
(3) [114] experiment (2)
[115]
EpCAM Membrane-bound ~ Focal (0) No (0) 59% (3) Animal Unknown (0) Yes (1) [120] 11

() [118]

experiment (2)
[119]

Extracellular localization of the protein was based on the literature; pattern of upregulation was obtained from the immunohistochemical staining (diffuse,
staining in >50 % of tumor cells in the majority (>50 %) of the patients; focal, staining in <50 % of tumor cells in the majority (>50 %) of the patients; or
negative, staining in 0 % of the tumor cells in the majority (>50 %) of the patients) described in this study; tumor to normal (T/N) ratio of the biomarker
expression, as determined by significant higher mean immunohistochemistry staining (staining intensity was classified for every patient as follows: 0 =
negative, 1 = weak, 2 = moderate, and 3 = strong) in pancreatic adenocarcinoma compared to normal pancreatic tissue; percentage of patients with positive
expression were described according the findings of the current study; previous imaging success was defined as published in vivo tumor-specific imaging
studies directed at the target; enzymatic activity refers to enzymatic activity of the target in and around the tumor described in the literature, that potentially can
be used for locally activated probes; internalization indicates the receptor could have the ability to internalize the probe-target complex in the tumor cell

according to previous studies

EGFR (p<0.001; p<0.001), and uPAR (p<0.001;
p=0.056) was significantly higher compared to normal
pancreatic tissue (Fig. 1). In periampullary adenocarci-
noma, the mean integrin o,fs (p»<0.001), CEA
(»<0.001), and VEGFR2 (p=0.045) staining intensity
were significantly higher.

Biomarker Panels

The combined expression of two biomarkers was evalu-
ated to assess their potential as a dual target for tumor-
specific imaging (Table 5). In pancreatic adenocarci-
noma, integrin o,Ps and/or CEA were expressed in 99 %
of the patients and 64 % of the cases expressed both
integrin a,B¢ and CEA, suggesting that the combination
of both targets would be a promising approach for
tumor-specific imaging. In periampullary adenocarci-
noma, the most promising combination was CEA and
EGFR, whereas all cases expressed either CEA and/or
EGFR. In addition, integrin o,fs and/or CEA were
expressed in 96 % of the cases.

TASC Score

The TASC score was calculated for all molecular markers
evaluated in this study (Tables 3 and 4). Integrin o, B (20 points),
CEA (20 points), uPAR (19 points), cMET (18 points), and
EGFR (18 points) were considered suitable targets for tumor-
specific imaging of pancreatic adenocarcinoma according the
TASC score. For tumor-specific imaging of periampullary
adenocarcinoma, VEGFR2 (21 points), CEA (20 points), cMET
(19 points), EGFR (18 points), and integrin o3¢ (18 points) were
categorized as potential targets by the TASC scoring system.

Discussion

Tumor-specific intraoperative imaging is a rapidly emerging
field that holds great promise to reduce tumor-positive
resection margin rates in oncologic pancreatic surgery [30].
However, to make the transition to clinical practice, tumor-
specific imaging targets and accompanying contrast agents
are prerequisite [15]. Therefore, the present study strives to
provide the first steps toward clinical translation by
investigating the suitability of a set of molecular markers
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Table 4. Target Selection Criteria (TASC) score for integrin a,fs, carcinoembryonic antigen (CEA), hepatocyte growth factor receptor (cMET), epithelial
growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor (HER2), urokinase receptor (uPAR), and
vascular endothelial growth factor receptor 2 (VEGFR2) in periampullary adenocarcinoma

Target Extracellular protein Pattern of T/N ratio Percentage with Previously Enzymatic internalization TASC
localization of the upregulation (points positive expression  imaged activity (points Score
protein (points (points awarded) (points awarded) (points (points awarded)
awarded) awarded) awarded) awarded)

VEGFR2  Membrane-bound (3) Diffuse (4) Yes (3) 86% (5) Animal experiment Yes

[114] (2 [115] )
[116] Yes (1) [117] 21
CEA Membrane-bound (3) Diftuse (4) Yes (3) 89% (5) Animal experiment
[101] (2) [74, 77]
Unknown (0) Yes (1) [102] 20
c¢cMET Membrane-bound (3) Diffuse (4) No (0) 96% (6) Animal experiment Yes
[105] (2) [106] ()
[107] Yes (1) [108] 19
EGFR Membrane-bound (3) Diffuse (4) Yes (3) 59% (3) In patients Unknown (0)  Yes (1) [111] 18
[109] (0) [86,
110]
Integrin Membrane-bound (3) Diffuse (4) Yes (3) 68% (3) Animal experiment No (0)
oo [99] (2) [68]
[100] Yes (1) [65] 18
EpCAM Membrane-bound (3) Diffuse (4) No (0) 68% (3) Animal experiment
[118] (2) [119]
Unknown (0 Yes (1) [120] 17
HER2 Membrane-bound (3) Diftuse (4) No (0) 88% (5) Animal experiment
[112] 2) [89]
Unknown (0 Yes (1) [113] 17
UPAR Membrane-bound (3) Focal (0) Yes (3) 4% (0) Animal experiment Yes
[71] @ 1] (1)
[103] Yes (1) [104] 12

Extracellular localization of the protein was based on the literature; pattern of upregulation was obtained from the immunohistochemical staining (diffuse,
staining in >50 % of tumor cells in the majority (>50 %) of the patients; focal, staining in <50 % of tumor cells in the majority (>50 %) of the patients; or
negative, staining in 0 % of the tumor cells in the majority (>50 %) of the patients) described in this study; tumor to normal (T/N) ratio of the biomarker
expression, as determined by significant higher mean immunohistochemistry staining (staining intensity was classified for every patient as follows: 0 =
negative, 1 = weak, 2 = moderate, and 3 = strong) in periampullary adenocarcinoma compared to normal pancreatic tissue; percentage of patients with positive
expression; percentage of patients with positive expression were described according the findings of the current study; previous imaging success was defined
as published in vivo tumor-specific imaging studies directed at the target; enzymatic activity refers to enzymatic activity of the target in and around the tumor
described in the literature, that potentially can be used for locally activated probes; internalization indicates the receptor could have the ability to internalize the
probe-target complex in the tumor cell according to previous studies

as potential targets for tumor-specific imaging of pancreatic targets for tumor-specific contrast agent development. By
adenocarcinoma. The results of this study show that integrin ~ combining individual biomarkers in dual biomarker panels,
o,B¢, CEA, EGFR, and uPAR are significantly upregulated  the coverage of patients was increased: in pancreatic
in pancreatic adenocarcinoma compared to healthy pancre- adenocarcinoma, considering almost the complete popula-
atic tissue and suggest that these biomarkers are promising tion expressed either integrin o, and/or CEA. Furthermore,

Table 5. Expression, as determined by immunohistochemistry, of biomarkers panels (combining the expression of two molecular markers) consisting of
integrin o, f4, carcinoembryonic antigen (CEA), epithelial growth factor receptor (EGFR), and/or urokinase receptor (uPAR) in pancreatic and periampullary
adenocarcinoma

Biomarker panel Total population Pancreatic adenocarcinoma Periampullary adenocarcinoma
Overlapping Total Overlapping Total Overlapping Total
expression expression expression expression expression expression

Integrin o, CEA 64 % 97 % 64 % 99 % 63 % 96 %

Integrin o, B¢ uPAR 52 % 90 % 62 % 96 % 4% 73 %

Integrin o, EGFR 62 % 91 % 66 % 94 % 44 % 82 %

CEA uPAR 43 % 91 % 50 % 91 % 4% 88 %

CEA EGFR 52 % 91 % 52 % 90 % 54 % 100 %

uPAR EGFR 40 % 83 % 48 % 88 % 60 % 68 %

Overlapping expression refers to the percentage of patients that show positive expression (positive expression was defined as positive if >10 % of the tumor
cells expressed a moderate or strong staining pattern) for both molecular markers in the biomarker panel. Total expression describes the frequency of patients
that show positive expression (positive expression was defined as positive if >10 % of the tumor cells expressed a moderate or strong staining pattern) of one
or both molecular markers in the biomarker panel and therefore could be visualized with a dual-tracer targeting both biomarkers
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the TASC score confirmed the potential of integrin o[,
CEA, EGFR, and uPAR as suitable targets for tumor-
specific imaging.

Previous reports regarding the expression of integrin o,
(85-100 %), cMET (82—-100 %), EGFR (36-69 %), EpCAM
(56-78 %), HER2 (16-69 %), and VEGFR2 (64-93 %) in
pancreatic adenocarcinoma are consistent with our results
[31-47]. Preceding findings demonstrate a higher expression
of CEA (98-100 %) and uPAR (90-96 %) in pancreatic
adenocarcinoma to our findings; however, this slight
discrepancy is not likely to alter the final conclusion of this
study [33, 35, 48]. Furthermore, studies of others showed
analogue to our results that cMET, EpCAM, and HER?2 are
overexpressed in healthy pancreatic tissue, which would
render them less preferable as imaging targets [37, 38, 40—
42]. Importantly, the expression of integrin a,fs, CEA, and
uPAR has been described previously in compliance with our
results, as very low or undetectable in normal pancreatic
tissue, which would translate to a favorable tumor-to-
background ratio when used for imaging purposes [31, 35,
48, 49]. EGFR and VEGFR2 were previously shown as
respectively present and absent in normal pancreatic tissue,
contradicting our findings [41, 42, 49]. This ambiguity
highlights the need to further investigate the ability of EGFR
and VEGFR to distinguish between normal and malignant
pancreatic tissue, especially since fluorescence-labeled con-
trast agents directed at EGFR and VEGF, including
bevacizumab-IRDye800CW, cetuximab-IRDye800CW, and
panitumab-IRDye800CW, are in various stages of clinical
trials for clinical use in several other types of cancer [15].

The results of this study are posed by limitations
inherent to immunohistochemical analysis, such as
variation in the quality of the primary antibodies,
immunohistochemical staining techniques, scoring
criteria, paraffin impregnation, surgical specimen fixation
delay, or diversity in the ethnic distribution of the study
population [50, 51]. In addition, the immunohistochem-
istry procedure, including tissue fixation and antigen
retrieval, destroys the membrane integrity and protein
conformation, which makes the protein less representa-
tive for its naive counterpart. The antibodies used in this
study were not specifically selected for the development
of tumor-specific probes, since the focus of this study
was to identify the most suitable targets; however, the
antibodies in this study used for integrin o,B¢ (6.2A,
Biogen Idec MA Inc.), CEA (A0155, Dako), EGFR
(E30, Dako), EpCAM (323A3), and uPAR (ATN-615)
react on the extracellular epitopes of their analogues and
have been described for use on intact protein [52]. The
latter could be promising for use in imaging probes.
Furthermore, the normal pancreatic tissue used in this
study was obtained in proximity of the tumor for an
optimal representation of the reality of image-guided
surgery. Premalignant biological changes may already
exist in this presumed normal pancreatic tissue, which
could explain for the differences between our findings

and the biomarker expression in normal pancreatic tissue
reported in the literature. For the purpose of this study,
the term periampullary adenocarcinoma was used as an
omnibus term for a very a heterogeneous group of
adenocarcinoma that invade the head of the pancreas
with distinctively different histology and expression of
molecular markers as they originate from the duodenum,
papilla of Vateri or the common bile duct. Hence, it is
challenging or even impossible to draw conclusions that
are true for the whole cohort periampullary adenocarci-
noma based on our findings or represent them with a
histology slide in Fig. 1. Moreover, this study applies a
threshold of over 10 % medium or dark stained tumor
cells on 2-mm core TMAs to define tumor positivity.
Therefore, the results of this study do not provide
conclusive evidence on whether the evaluated targets
could be used for tumor-specific imaging of the complete
tumor and all residual disease. Nevertheless, the results
of this study provide guidance on which molecular
makers show the most promise for further investigation
as tumor-specific imaging targets. Likewise, the reported
expression of the composed biomarker panels investi-
gated in this study indicates which biomarker combina-
tions show complementary instead of overlapping
expression in the majority of pancreatic adenocarcinoma
and subsequently holds promise for future more elaborate
examination. However, considering the >10 % threshold,
these results are not decisive on whether dual tracers
directed at the inquired biomarker panels will be able to
visualize the entire disease burden.

The TASC score identified cMET as a promising imaging
target for pancreatic adenocarcinoma, whereas cMET did not
significantly differentiate between healthy and malignant
pancreatic tissue in our hands. These results suggest that the
TASC score still experiences teething trouble and needs
further validation and adaptation, since distinguishing
between normal and malignant tissue is considered the
cornerstone of surgical oncology. Various therapeutic
antibodies have been investigated in preclinical models for
imaging of cancer, including cetuximab, panitumumab, and
bevacizumab [53-56]. Human clinical trials are underway,
but none of these biologics are presently available for
intraoperative imaging in humans. Use of an FDA-approved
targeting molecule facilitates clinical translation, because it
lowers the cost barrier to clinical practice, since revenue
associated with diagnostic agents is significantly lower than
for therapeutic agents [16, 57]. Therefore, for future use, the
TASC score should also take into consideration the
availability of FDA-approved antibodies. Nevertheless, de
novo development of intraoperative diagnostics also takes
place, for example, the Arg-Gly-Asp (RGD) peptide has a
high affinity and selectivity for multiple integrins, among
them integrin a,P¢, and has extensively been studied for
imaging objectives [58, 59]. In addition, another example of
de novo developed imaging probes are autoquenched
fluorescent probes, such as ProSense, that convert from a
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nonfluorescent to fluorescent state by proteolytic activation
of lysosomal cysteine or serine proteases, hence the value of
including enzymatic activity in by the TASC score [60].
Furthermore, the TASC criteria could be eclaborated by
adding points to the score for targets with a soluble form that
can be targeted by certain antibodies, such as the ATN-615
antibody that recognizes a soluble form of uPA in addition
to uPAR, which allows for antibodies to also target receptors
that are already occupied by its soluble form thereby
increasing its reach. Nevertheless, the TASC score is a
promising tool to incorporate other favorable characteristics
of potential imaging targets for pancreatic adenocarcinoma
in a weighted and standardized manner in our judgment.

Despite the previously mentioned limitations, this
study was to the best of our knowledge the first study
to assess the ability of potential targets for the image-
guided surgery of pancreatic adenocarcinoma to distin-
guish between normal and malignant pancreatic tissue in
a relatively large cohort of patients with pancreatic
adenocarcinoma using the TASC score. In addition, this
study was also able to investigate the expression of
potential imaging targets in periampullary adenocarci-
noma. The latter is of added value since the histological
origin of pancreatic head masses is often unknown in
wait of pancreatic surgery. Furthermore, this study was
to our knowledge the first to describe the combined
expression of potential imaging targets to facilitate future
development of dual-labeled imaging probes; however,
these dual-purpose agents present additional hurdles in
development and clinical translation that are beyond the
scope of this article before their potential is fully realized
[16]. Moreover, aside from providing guidance for tumor
surgery, molecular imaging techniques also play an
increasingly important role in the preoperative staging
and guidance of cancer therapy in pancreatic adenocar-
cinoma patients [61].

In conclusion, tumor-targeted intraoperative imaging of
pancreatic adenocarcinoma has great potential to improve
pancreatic surgery [12, 62]. However, the clinical implemen-
tation of this novel technique is currently halted by the lack of
clinically approved tumor-specific contrast agents. Therefore,
the present study sought to pave the way for future develop-
ment of tumor-specific contrast agents and consecutive image-
guided resection of pancreatic adenocarcinoma, by investigat-
ing the most suitable molecular targets for tumor-specific
imaging. The results of this study show that a dual-targeted
tracer aimed at both integrin o,¢ and CEA would be able to
detect tumor cells in 99 % of all pancreatic cancer patients.
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