41 research outputs found
Neutrophil Extracellular Trap (NET)-Mediated Killing of Pseudomonas aeruginosa: Evidence of Acquired Resistance within the CF Airway, Independent of CFTR
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
Corticosteroid use and increased CXCR2 levels on leukocytes are associated with lumacaftor/ivacaftor discontinuation in cystic fibrosis patients homozygous for the F508del CFTR mutation.
Cystic fibrosis (CF) is the most common life-shortening genetic disease and is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Several current therapies aim at improving availability and/or function of the mutant CFTR proteins. The combination therapeutic lumacaftor/ivacaftor (Orkambi, luma/iva) partially corrects folding and potentiates CFTR function impaired by the F508del mutation. Despite the potential for clinical benefit, a substantial number of patients discontinue treatment due to intolerable adverse effects. The aim of the present study is to identify differences between individuals who continued treatment and those who discontinued due to adverse respiratory effects to potentially inform treatment decisions. Clinical data from the year prior to treatment initiation were analyzed from 82 patients homozygous for the F508del mutation treated at the Colorado Adult CF Program. Blood samples were collected from 30 of these subjects before initiation of treatment to examine expression of circulating leukocyte surface antigens and cytokines. Clinical and demographic characteristics were analyzed along with inflammatory markers to determine biomarkers of drug discontinuation. The use of oral prednisone and/or nasal budesonide in the year prior to luma/iva initiation was more prevalent in CF subjects who did not tolerate luma/iva (82% vs. 43%). Increased age, but not gender or initial lung function, was associated with higher probability of discontinuing treatment due to side effects overall. Worse lung function (lower ppFEV1, ppFEF25-75 ≤ 60%) was associated with higher incidence of discontinuing treatment due to pulmonary adverse effects. In a nested cohort of patients, increased surface levels of CXCR2 on CD14+CD16- monocytes were associated with discontinuation. Overall, the patients who tolerated luma/iva were distinguishable from those who did not tolerate the drug based on clinical and cellular markers obtained prior to treatment initiation
Abrogation of Anti-Inflammatory Transcription Factor LKLF in Neutrophil-Dominated Airways
This is the first report to describe a role for Lung Kruppel-like Factor (LKLF or KLF2) in inflammatory airways diseases. In the present study, we identify that LKLF is constitutively expressed in the small airways of normal lungs; however, its expression disappears in severe airway diseases, such as cystic fibrosis (CF) and chronic obstructive pulmonary disease. LKLF from primary airway epithelial cells inhibits NF-κB–driven transcription induced by Pseudomonas aeruginosa 7-fold, but is down-regulated in the presence of TNF-α and activated human neutrophils. As a constitutively expressed protein, LKLF inhibits release of a key pro-inflammatory chemokine, IL-8, from airway epithelia. Its expression by lung epithelial cells is enhanced in the presence of TNF blockade. Thus, cytokine-mediated inhibition of LKLF by neutrophils may contribute to ongoing recruitment by promoting IL-8 release from airway epithelia. We conclude that, in neutrophil-dominated airway environments, such as that seen in CF, reduced LKLF activity releases a brake on pro-inflammatory cytokine production and thereby may contribute to the persistent inflammatory responses seen in CF airway disease
Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR.
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa