91 research outputs found

    TUMORES RAROS EN NIÑOS Y ADOLESCENTES

    Get PDF
    ResumenLos tumores infrecuentes están definidos como cánceres pediátricos con una incidencia anual <2 casos por millón. Aunque son percibidos como raros, constituyen el 15% de todos los cánceres en menores de 20 años y 30% de todos los tumores de pacientes entre 15 y 19 años.Se han desarrollado proyectos cooperativos nacionales e internacionales pediátricos con el fin de mejorar el manejo clínico y la investigación básica en estos tumores. Revisamos los procesos desarrollados y las dificultades que se han enfrentado, como bajas tasas de registro y participación en bancos de tumores y estudios clínicos. Esta experiencia inicial ha permitido desarrollar estrategias alternativas que permitirían implementar una iniciativa similar para América Latina.La experiencia demuestra la factibilidad de cooperación multidisciplinaria a nivel nacional y sugiere que se pueden realizar estudios internacionales, que aumenten nuestro entendimiento de la biología de estos tumores, mejorando los resultados de tratamiento de niños y adolescentes con cánceres infrecuentes.SummaryAlthough perceived as rare, infrequent tumors, defined as childhood solid malignancies with an annual incidence < 2/million and not considered in other clinical trials, account for 15% of all cancers in patients younger than age 20 and for 30% of all tumors in patients ages 15 to 19.National and international cooperative projects on rare paediatric tumours have been developed to improve the clinical management and basic research on these tumors. We reviewed the process developed and the problems it had to face, as low rates of registration, low levels of participation in tumor banking, and clinical trials. This initial experience has allowed to develop alternative strategies that could help to launch a latinamerican initiative.Experience demonstrates the feasibility of a national multidisciplinary cooperation and suggests that international studies can be performed, increasing our knowledge to understand the biology and improving the treatment results of young patients with rare cancers

    Seroconversión frente a primovacunación reforzada contra hepatitis B en niños con cáncer

    Get PDF
    ResumenIntroducciónLa respuesta inmune a los antígenos de las vacunas está disminuida en los niños con cáncer. El objetivo de este estudio fue evaluar la seroconversión frente a vacuna ADN recombinante contra hepatitis B al momento del inicio de la quimioterapia y/o remisión en niños con cáncer.Pacientes y métodoEstudio prospectivo, bicéntrico, controlado, no aleatorizado de niños con diagnóstico reciente de cáncer pareados con niños sanos. Los casos fueron vacunados a tiempo 0, 1 y 6 meses, a dosis de 20 y 40μg si eran<ó>10 años, respectivamente, con vacuna ADN recombinante contra hepatitis B, en el momento del diagnóstico en el caso de los tumores sólidos y luego de la remisión en el caso de los tumores hematológicos. El grupo control recibió el mismo esquema, con dosis de 10 o 20μg respectivamente. Se midieron anticuerpos séricos anti-HBs a los 2, 8 y 12 meses posvacunación. Seroconversión se definió como títulos anti-HBs>10 mUI/ml al octavo mes.ResultadosUn total de 78 niños con cáncer y 25 controles fueron evaluados con títulos anti-HBs al octavo mes. La tasa de seroconversión fue de 26,9%, en niños con cáncer, sin diferencia por edad, género ni tipo de tumor (p=0,13; 0,29; y 0,44, respectivamente), y de 100% en el grupo control (p<0,0001, comparado con los niños con cáncer). En el seguimiento a los 12 meses solo el 31,9% de los niños con cáncer presentaba títulos anti-HBs>10mUI/ml.ConclusionesLa vacunación contra hepatitis B con vacuna ADN recombinante, con esquema reforzado de 3 dosis, en el momento del inicio de la quimioterapia y/o remisión provee una respuesta inmune insuficiente en la mayoría de los niños con cáncer. En esta población debieran evaluarse vacunas de tercera generación, con adyuvantes más inmunogénicos, esquemas reforzados a los 0, 1, 2 y 6 meses, medición de títulos de anticuerpos al octavo y duodécimo mes, eventual uso de refuerzos y reevaluación de inmunogenicidad si correspondiese.AbstractIntroductionImmune response against vaccine antigens may be impaired in children with cancer. The aim of this study was to evaluate the seroconversion response against hepatitis B vaccination (HBV) at the time of chemotherapy onset and/or remission in children with cancer.Patients and methodProspective, two-centre, controlled, non-randomised study conducted on children recently diagnosed with cancer, paired with healthy subjects. Cases received HBV at time 0, 1 and 6 months with DNA recombinant HBV at a dose of 20 and 40μg if<or>than 10 years of age, respectively, at the time of diagnosis for solids tumours and after the remission in case of haematological tumours. Controls received the same schedule, but at of 10 and 20μg doses, respectively. HBs antibodies were measured in serum samples obtained at 2, 8 and 12 months post-vaccination. Protective titres were defined as>10 mIU/ml at 8th month of follow up.ResultsA total of 78 children with cancer and 25 healthy controls were analysed at month 8th of follow up. Seroconversion rates in the cancer group reached 26.9%, with no differences by age, gender or type of tumour (P=.13, .29, and .44, respectively). Control group seroconversion was 100% at the 8th month, with P<.0001 compared with the cancer group. At month 12 of follow up, just 31.9% of children with cancer achieved anti-HBs antibodies>10 mIU/ml.ConclusionsVaccination against hepatitis B with three doses of DNA recombinant vaccine at an increased concentration, administrated at the time of onset of chemotherapy and/or remission provided an insufficient immune response in a majority of children with cancer. More immunogenic vaccines should be evaluated in this special population, such as a third generation, with more immunogenic adjuvants, enhanced schedules at 0, 1, 2, 6 month, evaluation of antibody titres at month 8 and 12h to evaluate the need for further booster doses

    Mapping Pediatric Oncology Clinical Trial Collaborative Groups on the Global Stage

    Get PDF
    The global pediatric oncology clinical research landscape, particularly in Central and South America, Africa, and Asia, which bear the highest burden of global childhood cancer cases, is less characterized in the literature. Review of how existing pediatric cancer clinical trial groups internationally have been formed and how their research goals have been pursued is critical for building global collaborative research and data-sharing efforts, in line with the WHO Global Initiative for Childhood Cancer. METHODS: A narrative literature review of collaborative groups performing pediatric cancer clinical research in each continent was conducted. An inventory of research groups was assembled and reviewed by current pediatric cancer regional and continental leaders. Each group was narratively described with identification of common structural and research themes among consortia. RESULTS: There is wide variability in the structure, history, and goals of pediatric cancer clinical trial collaborative groups internationally. Several continental regions have longstanding endogenously-formed clinical trial groups that have developed and published numerous adapted treatment regimens to improve outcomes, whereas other regions have consortia focused on developing foundational database registry infrastructure supported by large multinational organizations or twinning relationships. CONCLUSION: There cannot be a one-size-fits-all approach to increasing collaboration between international pediatric cancer clinical trial groups, as this requires a nuanced understanding of local stakeholders and resources necessary to form partnerships. Needs assessments, performed either by local consortia or in conjunction with international partners, have generated productive clinical trial infrastructure. To achieve the goals of the Global Initiative for Childhood Cancer, global partnerships must be sufficiently granular to account for the distinct needs of each collaborating group and should incorporate grassroots approaches, robust twinning relationships, and implementation science

    Highlights from the 1st Latin American meeting on metronomic chemotherapy and drug repositioning in oncology, 27–28 May, 2016, Rosario, Argentina

    Get PDF
    Following previous metronomic meetings in Marseille (2011), Milano (2014), and Mumbai (2016), the first Latin American metronomic meeting was held in the School of Medical Sciences, National University of Rosario, Rosario, Argentina on 27 and 28 of May, 2016. For the first time, clinicians and researchers with experience in the field of metronomics, coming from different countries in Latin America, had the opportunity of presenting and discussing their work. The talks were organised in three main sessions related to experience in the pre-clinical, and clinical (paediatric and adult) areas. The different presentations demonstrated that the fields of metronomic chemotherapy and repurposing drugs in oncology, known as metronomics, constitute a branch of cancer therapy in permanent evolution, which have strong groups working in LatinAmerica, both in the preclinical and the clinical settings including large, adequately designed randomised studies. It was shown that metronomics offers treatments, which, whether they are combined or not with the standard therapeutic approaches, are not only effective but also minimally toxic, with the consequent improvement of the patient’s quality of life, and inexpensive, a feature very important in low resource clinical settings. The potential use of metronomic chemotherapy was proposed as a cost/effective treatment in low-/middle-income countries, for adjuvant therapy in selected tumours. The fundamental role of the governmental agencies and non-governmental alliances, as the Metronomic Global Health Initiative, in supporting this research with public interest was underlined

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (&gt;66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
    corecore