563 research outputs found
Diâmetro médio ponderado de partÃculas para estimativa de propriedades fÃsico-hÃdricas dos solos.
O principal objetivo deste trabalho foi estimar caracterÃsticas fÃsico-hÃdricas do solo de difÃcil obtenção, através de modelos matemáticos baseados em variáveis das análises de rotina. Foram selecionados, em áreas de plantações florestais, 13 solos variando de 40 a 590 g kg-1 de conteúdo de argila. Nestes solos, foram obtidas amostras deformadas e indeformadas na camada de 5 cm a 15 cm, e realizadas, em laboratório, análises quÃmicas (complexo sortivo, pH, acidez potencial) e fÃsicas (densidade do solo, curva de retenção de umidade e porosidades). Estabeleceram-se correlações entre as variáveis umidade ótima do solo para compactação e umidade na capacidade de campo com todos os parâmetros quÃmicos e fÃsicos analisados. A caracterÃstica do solo que apresentou o maior Ãndice de correlação com umidade ótima (r = 0,95) e com capacidade de campo (r = 0,93) foi o diâmetro médio ponderado de partÃculas (DMPP). O DMPP pode ser obtido em todos os levantamentos de solo já realizados e é a soma da multiplicação entre o diâmetro médio das quatro frações granulométricas e suas concentrações no solo. A umidade do solo à -1500 kPa também se correlacionou com o DMPP (r = 0,93), o que permite estimar a quantidade de água disponÃvel para as plantas
Expression of Rb2/p130 in breast and endometrial cancer: correlations with hormone receptor status
Rb2/p130 is a member of the retinoblastoma family of proteins, consisting of Rb, Rb2 and p107, which are important negative regulators of cell cycle progression and differentiation. While Rb2 downregulation was observed in several malignant tumours including endometrial cancer, the role of p130 in breast carcinomas is still unknown. We investigated Rb2 protein expression in tumour tissue from 68 mammary and 41 endometrial carcinomas, 4 mammary cell lines, and normal tissue samples. Therefore, we performed Western blot experiments for Rb2, Rb, and the oestrogen and progesterone receptors (ER, PR-A, PR-B). Weak or absent Rb2 expression was more often found in endometrial (59%) than in mammary carcinomas (24%). We found significant positive correlations of Rb2 expression with Rb, ER, and PR-B in breast cancer samples, and of Rb2 with Rb, PR-A, PR-B, and younger age in endometrial carcinomas. No significant associations with histological grading, stage, nodal involvement, or Ki67 staining were detected. Rb2 mRNA expression was studied by semi-quantitative RT-PCR in 56 endometrial or mammary tissue samples and correlated significantly with Western blot results. Our results indicate that loss of Rb2 expression, mostly by transcriptional down-regulation, may be associated with the development and dedifferentiation of most endometrial and a subset of mammary carcinomas. © 2001 Cancer Research Campaign http://bjcancer.co
In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization
The manufacture of 3D scaffolds with specific controlled porous architecture, defined microstructure and an adjustable degradation profile was achieved using two-photon polymerization (TPP) with a size of 2 × 4 × 2 mm3. Scaffolds made from poly(D,L-lactide-co-ε-caprolactone) copolymer with varying lactic acid (LA) and ε -caprolactone (CL) ratios (LC16:4, 18:2 and 9:1) were generated via ring-opening-polymerization and photoactivation. The reactivity was quantified using photo-DSC, yielding a double bond conversion ranging from 70% to 90%. The pore sizes for all LC scaffolds were see 300 μm and throat sizes varied from 152 to 177 μm. In vitro degradation was conducted at different temperatures; 37, 50 and 65°C. Change in compressive properties immersed at 37°C over time was also measured. Variations in thermal, degradation and mechanical properties of the LC scaffolds were related to the LA/CL ratio. Scaffold LC16:4 showed significantly lower glass transition temperature (T g) (4.8°C) in comparison with the LC 18:2 and 9:1 (see 32°C). Rates of mass loss for the LC16:4 scaffolds at all temperatures were significantly lower than that for LC18:2 and 9:1. The degradation activation energies for scaffold materials ranged from 82.7 to 94.9 kJ mol-1. A prediction for degradation time was applied through a correlation between long-term degradation studies at 37°C and short-term studies at elevated temperatures (50 and 65°C) using the half-life of mass loss (Time (M1/2)) parameter. However, the initial compressive moduli for LC18:2 and 9:1 scaffolds were 7 to 14 times higher than LC16:4 (see 0.27) which was suggested to be due to its higher CL content (20%). All scaffolds showed a gradual loss in their compressive strength and modulus over time as a result of progressive mass loss over time. The manufacturing process utilized and the scaffolds produced have potential for use in tissue engineering and regenerative medicine applications
Multifractal analysis of the metal-insulator transition in anisotropic systems
We study the Anderson model of localization with anisotropic hopping in three
dimensions for weakly coupled chains and weakly coupled planes. The eigenstates
of the Hamiltonian, as computed by Lanczos diagonalization for systems of sizes
up to , show multifractal behavior at the metal-insulator transition even
for strong anisotropy. The critical disorder strength determined from the
system size dependence of the singularity spectra is in a reasonable agreement
with a recent study using transfer matrix methods. But the respective spectrum
at deviates from the ``characteristic spectrum'' determined for the
isotropic system. This indicates a quantitative difference of the multifractal
properties of states of the anisotropic as compared to the isotropic system.
Further, we calculate the Kubo conductivity for given anisotropies by exact
diagonalization. Already for small system sizes of only sites we observe
a rapidly decreasing conductivity in the directions with reduced hopping if the
coupling becomes weaker.Comment: 25 RevTeX pages with 10 PS-figures include
Effects of Scale-Free Disorder on the Anderson Metal-Insulator Transition
We investigate the three-dimensional Anderson model of localization via a
modified transfer-matrix method in the presence of scale-free diagonal disorder
characterized by a disorder correlation function decaying asymptotically
as . We study the dependence of the localization-length exponent
on the correlation-strength exponent . % For fixed disorder ,
there is a critical , such that for ,
and for , remains that of the
uncorrelated system in accordance with the extended Harris criterion. At the
band center, is independent of but equal to that of the
uncorrelated system. The physical mechanisms leading to this different behavior
are discussed.Comment: submitted to Phys. Rev. Let
Anisotropic fractal magnetic domain pattern in bulk Mn1.4PtSn
The tetragonal compound Mn1.4PtSn with D2d symmetry recently attracted attention as the first known material that hosts magnetic antiskyrmions, which differ from the skyrmions known so far by their internal structure. The latter have been found in a number of magnets with the chiral crystal structure. In previous works, the existence of antiskyrmions in Mn1.4PtSn was unambiguously demonstrated in real space by means of Lorentz transmission electron microscopy on thin-plate samples (∼100 nm thick). In the present study, we used small-angle neutron scattering and magnetic force microscopy to perform reciprocal- and real-space imaging of the magnetic texture of bulk Mn1.4PtSn single crystals at different temperatures and in applied magnetic field. We found that the magnetic texture in the bulk differs significantly from that of thin-plate samples. Instead of spin helices or an antiskyrmion lattice, we observe an anisotropic fractal magnetic pattern of closure domains in zero field above the spin-reorientation transition temperature, which transforms into a set of bubble domains in high field. Below the spin-reorientation transition temperature the strong in-plane anisotropy as well as the fractal self-affinity in zero field is gradually lost, while the formation of bubble domains in high field remains robust. The results of our study highlight the importance of dipole-dipole interactions in thin-plate samples for the stabilization of antiskyrmions and identify criteria which should guide the search for potential (anti)skyrmion host materials. Moreover, they provide consistent interpretations of the previously reported magnetotransport anomalies of the bulk crystals. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society
Expression and prognostic relevance of activated extracellular-regulated kinases (ERK1/2) in breast cancer
Extracellular-regulated kinases (ERK1, ERK2) play important roles in the malignant behaviour of breast cancer cells in vitro. In our present study, 148 clinical breast cancer samples (120 cases with follow-up data) were studied for the expression of ERK1, ERK2 and their phosphorylated forms p-ERK1 and p-ERK2 by immunoblotting, and p-ERK1/2 expression in corresponding paraffin sections was analysed by immunohistochemistry. The results were correlated with established clinical and histological prognostic parameters, follow-up data and expression of seven cell-cycle regulatory proteins as well as MMP1, MMP9, PAI-1 and AP-1 transcription factors, which had been analysed before. High p-ERK1 expression as determined by immunoblots correlated significantly with a low frequency of recurrences and infrequent fatal outcome (P=0.007 and 0.008) and was an independent indicator of long relapse-free and overall survival in multivariate analysis. By immunohistochemistry, strong p-ERK staining in tumour cells was associated with early stages (P=0.020), negative nodal status (P=0.003) and long recurrence-free survival (P=0.017). In contrast, expression of the unphosphorylated kinases ERK1 and ERK2 was not associated with clinical and histological prognostic parameters, except a positive correlation with oestrogen receptor status. Comparison with the expression of formerly analysed cell-cycle- and invasion-associated proteins corroborates our conclusion that activation of ERK1 and ERK2 is not associated with enhanced proliferation and invasion of mammary carcinomas
Finite-size scaling from self-consistent theory of localization
Accepting validity of self-consistent theory of localization by Vollhardt and
Woelfle, we derive the finite-size scaling procedure used for studies of the
critical behavior in d-dimensional case and based on the use of auxiliary
quasi-1D systems. The obtained scaling functions for d=2 and d=3 are in good
agreement with numerical results: it signifies the absence of essential
contradictions with the Vollhardt and Woelfle theory on the level of raw data.
The results \nu=1.3-1.6, usually obtained at d=3 for the critical exponent of
the correlation length, are explained by the fact that dependence L+L_0 with
L_0>0 (L is the transversal size of the system) is interpreted as L^{1/\nu}
with \nu>1. For dimensions d\ge 4, the modified scaling relations are derived;
it demonstrates incorrectness of the conventional treatment of data for d=4 and
d=5, but establishes the constructive procedure for such a treatment.
Consequences for other variants of finite-size scaling are discussed.Comment: Latex, 23 pages, figures included; additional Fig.8 is added with
high precision data by Kramer et a
- …