120 research outputs found

    An Innovative Enhanced Wall to Reduce the Energy Demand in Buildings

    Get PDF
    Energy saving in buildings is one of most important issues for European countries. Although in the last years many studies have been carried out in order to reach the zero-consumption house the energy rate due to passive solar heating could be further enhanced. This paper proposes a method for increasing the energy rate absorbed by opaque walls by using a two phase loop thermosyphon connecting the internal and the external façade of a prefabricated house wall. The evaporator zone is embedded into the outside facade and the condenser is indoor placed to heat the domestic environment. The thermosyphon has been preliminary designed and implanted into a wall for a prefabricated house in Italy. An original dynamic thermal model of the building equipped with the thermosyphon wall allowed the evolution of the indoor temperature over time and the energy saving rates. The transient behaviour of the building has been simulated during the winter period by using the EnergyPlusTM software. The annual saving on the heating energy is higher than 50% in the case of a low consumption building

    An Innovative Enhanced Wall to Reduce the Energy Demand in Buildings

    Get PDF
    Energy saving in buildings is one of most important issues for European countries. The 40% of the total European energy consumption is due to building Heating and conditioning. Although in the last years many studies have been carried out in order to reach the zero-consumption house by means of passive solar heating, ventilation or thermal insulation, the energy rate due to passive solar heating could be further enhanced. This paper proposes a method for increasing the energy rate absorbed by opaque walls by using a two phase loop thermosyphon connecting the internal and the external façade of a prefabricated house wall. The evaporator zone is located on the outside face and it is irradiated by the sunlight while the condenser zone is placed on the internal face and releases heat to the domestic environment. The temperature differences between the internal and external wall facades are lower than 30 K and the heat fluxes at the evaporator change during the day from 2 up to 7 x 104 W/m2 K. The thermosyphon has been preliminary designed and implanted into a wall for a prefabricated house in Italy. A thermal model of building equipped with the thermosiphon wall has been used in order to evaluate the impact in terms of energy saving and thermal comfort in a real prefabricated low consumption house. The transient behaviour of the building has been simulated day by day during the winter period by using the EnergyPlusTM software. This solution enhances the thermal comfort of the building by keeping the indoor temperature close to the thermal comfort standard for most of the day. The annual saving on the heating energy is higher than 50% in the case of a low consumption buildin

    Thermal Contact Conductance at Low Contact Pressures

    Full text link
    New correlations are presented for the truncated Gaussian (TG) thermal contact conductance model during first loading. The TG model is also incorporated into existing models for the hysteresis effect of thermal contact conductance and for the plastic contact pressure. The TG models, as well as the existing fully Gaussian models, are compared against new experimental data collected at very low contact pressures. Comparison between the models and the data shows that the fully Gaussian model underpredicts data at low contact pressures, as already extensively reported in the literature. The first-loading TG model predicts the experiments very well over the entire range of the contact pressures tested. The hysteresis effect model proved to be accurate only for contact pressure above 400 kPa, in general. The TG model requires a surface roughness parameter, the level of truncation of the probability density function of surface heights, which cannot be obtained accurately from ordinary surface profilometry. The most accurate and straightforward way to estimate this surface geometry parameter is from thermal tests. The levels of truncation of bead-blasted stainless steel 304 and Ni 200 are obtained and presented. Nomenclature A = area, m2 a = mean contact spot radius, m c1 = Vickers microhardness correlation coefficient, P

    Salmonella enterica Typhimurium FljBA operon Sstability: implications regarding the origin of Salmonella enterica I 4,[5],12:i:-

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORSalmonella enterica subsp enterica serovar 4,5,12:i:- has been responsible for many recent Salmonella outbreaks worldwide. Several studies indicate that this serovar originated from S. enterica subsp enterica serovar Typhimurium, by the loss of the flagellar phase II gene (fljB) and adjacent sequences. However, at least two different clones of S. enterica 4,5,12:i:- exist that differs in the molecular events responsible for fljB deletion. The aim of this study was to test the stability of the fljBA operon responsible for the flagellar phase variation under different growth conditions in order to verify if its deletion is a frequent event that could explain the origin and dissemination of this serovar. In fact, coding sequences for transposons are present near this operon and in some strains, such as S. enterica Typhimurium LT2, the Fels-2 prophage gene is inserted near this operon. The presence of mobile DNA could confer instability to this region. In order to examine this, the cat (chloramphenicol acetyltransferase) gene was inserted adjacent to the fljBA operon so that deletions involving this genomic region could be identified. After growing S. enterica chloramphenicol-resistant strains under different conditions, more than 104 colonies were tested for the loss of chloramphenicol resistance. However, none of the colonies were sensitive to chloramphenicol. These data suggest that the origin of S. enterica serovar 4,5,12:i:- from Typhimurium by fljBA deletion is not a frequent event. The origin and dissemination of 4,5,12:i:- raise several questions about the role of flagellar phase variation in virulence.Salmonella enterica subsp enterica serovar 4,5,12:i:- has been responsible for many recent Salmonella outbreaks worldwide. Several studies indicate that this serovar originated from S. enterica subsp enterica serovar Typhimurium, by the loss of the flagel1441905719065FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR2009/15956-7; 2012/10608-3; 2012/05382-6; 2014/11280-7; 2013/11880-1308955/2012-9; 141629/2012-601P-04520-201

    Validation of the test need for cognition: a study in behavioral accounting

    Get PDF
    This study aimed to validate the Need for Cognition scale (NFC) in behavioral accounting. In addition, we sought to measure the possible correlations between the level of need for cognition and the existence of cognitive biases in decisions in accounting and financial information. Two validations were performed to carry out the process of full validation – criterion and construct. The analysis was done by the examination of a sample comprised by 128 graduation students. The statistical technique used for the validation of this test was a factorial analysis for it has the ability to determine the degree of influence of a particular variable in the explanation of a factor, and the processing logistic regression was used for the explanation of possible values as a function of known values or independent variables. The results of the construct of validity showed the legitimacy of the NFC as a unidimensional scale excluding three outputs of its original scale, since the criterion validity of the results confirmed the impact of the level of cognition in maximizing the occurrence of heuristics in managerial decisions

    The role of bioenergy in a climate-changing world

    Get PDF
    Bioenergy has been under intense scrutiny over the last ten years with significant research efforts in many countries taking place to define and measure sustainable practices. We describe here the main challenges and policy issues and provide policy recommendations for scaling up sustainable bioenergy approaches globally. The 2016 Intended Nationally Determined Contributions (INDCs defined under the UN Framework Convention on Climate Change) (UNFCCC) Conference of the Parties (COP21) will not reach global Greenhouse Gas (GHG) emission targets of 2°C. Sustainable biomass production can make a significant contribution. Substantive evidence exists that many bioenergy cropping systems can bring multiple benefits and off-set environmental problems associated with fossil fuels usage as well as intensive food production and urbanization. We provide evidence that there are many approaches to land use for bioenergy expansion that do not lead to competition for food or other needs. We should focus on how to manage these approaches on a synergistic basis and how to reduce tradeoffs at landscape scales. Priorities include successful synergies between bioenergy and food security (integrated resource management designed to improve both food security and access to bioenergy), investments in technology, rural extension, and innovations that build capacity and infrastructure, promotion of stable prices to incentivize local production and use of double cropping and flex crops (plants grown for both food and non-food markets) that provide food and energy as well as other services. The sustainable production of biomass requires appropriate policies to secure long-term support to improve crop productivity and also to ensure environmental as well as economic and social benefits of bioenergy cropping systems. Continuous support for cropping, infrastructure, agricultural management and related policies is needed to foster positive synergies between food crops and bioenergy production. In comparison to fossil fuels, biofuels have many positive environmental benefits. Potential negative effects caused by land-use change and agriculture intensification can be mitigated by agroecological zoning, best management practices, the use of eco-hydrology and biodiversity-friendly concepts at field, watershed and landscape scales. Global climate and environmental changes related to the use of fossil fuels and inequitable development make it unethical not to pursue more equitable energy development that includes bioenergy. To achieve sustainable development, competitiveness and costs of bioenergy production need to be addressed in a manner that considers not only economic gains but also development of local knowledge and social and environmental benefits
    corecore