14 research outputs found

    Organic-free synthesis of nanostructured SnO2 thin films by chemical solution deposition

    Get PDF
    Novel synthetic approach for preparation of single phase porous SnO2 thin films with controllable grain size and porosity has been developed. The entire process requires neither organic solvents nor addition of any complexing agent. The thin films were deposited using the spin coating technique from an aqueous solution prepared by dissolving tin(II) oxalate in hydrogen peroxide. X-ray diffraction analysis showed that the deposited films are single-phase and their crystallite size increases as the annealing temperature is increased from 300 to 800 °C. It was also found that the films exhibit a preferred (110) orientation of the crystallites. Scanning electron microscopy and atomic force microscopy were employed for the estimation of thickness and surface morphological features of the films. Thickness of the films after 10 deposition cycles was about 160 nm. Roughness of the films increased with the annealing temperature increasing. It has been found from the UV–Vis spectrometry measurements that the films are highly transparent in visible spectral range. The optical band gap was determined to be in the range from 3.86 to 4.00 eV depending on the annealing temperature.publishe

    Chemical solution deposition of la-substituted BiFe0.5Sc0.5O3 perovskite thin films on different substrates

    Get PDF
    In the present work, polycrystalline Bi0.67La0.33Fe0.5Sc0.5O3 thin films were synthesized using a simple and cost‐effective chemical solution deposition process employing the spin coating tech‐ nique. In order to check the feasibility of the fabrication of thin films on various types of substrates, the films were deposited on Pt‐coated silicon, silicon, sapphire, corundum, fused silica and glass. Based on the results of thermogravimetric analysis of precursor and thermal stability study, it was determined that the optimal annealing temperature for the formation of perovskite structure is 600 °C. It was observed that the relative intensity of the pseudocubic peaks (001)p and (011)p in the XRD patterns is influenced by the nature of substrates, suggesting that the formed crystallites have some preferred orientation. Roughness of the films was determined to be dependent on the nature of the substrate.publishe

    Microwave-Assisted Solvothermal Synthesis of Nanocrystallite-Derived Magnetite Spheres

    No full text
    The synthesis of magnetic particles triggers the interest of many scientists due to their relevant properties and wide range of applications in the catalysis, nanomedicine, biosensing and magnetic separation fields. A fast synthesis of iron oxide magnetic particles using an eco-friendly and facile microwave-assisted solvothermal method is presented in this study. Submicron Fe3O4 spheres were prepared using FeCl3 as an iron source, ethylene glycol as a solvent and reductor and sodium acetate as a precipitating and nucleating agent. The influence of the presence of polyethylene glycol as an additional reductor and heat absorbent was also evaluated. We reduce the synthesis time to 1 min by increasing the reaction temperature using the microwave-assisted solvothermal synthesis method under pressure or by adding PEG at lower temperatures. The obtained magnetite spheres are 200–300 nm in size and are composed of 10–30 nm sized crystallites. The synthesized particles were investigated using the XRD, TGA, pulsed-field magnetometry, Raman and FTIR methods. It was determined that adding PEG results in spheres with mixed magnetite and maghemite compositions, and the synthesis time increases the size of the crystallites. The presented results provide insights into the microwave-assisted solvothermal synthesis method and ensure a fast route to obtaining spherical magnetic particles composed of different sized nanocrystallites

    Evaluation of Electrochromic Properties of Polypyrrole/Poly(Methylene Blue) Layer Doped by Polysaccharides

    No full text
    Polypyrrole (Ppy) and poly(methylene blue) (PMB) heterostructure (Ppy-PMB) was electrochemically formed on the indium tin oxide (ITO) coated glass slides, which served as working electrodes. For electropolymerization, a solution containing pyrrole, methylene blue, and a saccharide (lactose, sucrose, or heparin) that served as dopant was used. The aim of this study was to compare the effect of the saccharides (lactose, sucrose, and heparin) on the electrochromic properties of the Ppy-PMB layer. AFM and SEM have been used for the analysis of the surface dominant features of the Ppy-PMB layers. From these images, it was concluded that the saccharides used in this study have a moderate effect on the surface morphology. Electrochromic properties were analyzed with respect to the changes of absorbance of the layer at two wavelengths (668 nm and 750 nm) by changing the pH of the surrounding solution and the potential between +0.8 V and −0.8 V. It was demonstrated that the highest absorbance changes are characteristic for all layers in the acidic media. Meanwhile, the absorbance changes of the layers were decreased in the more alkaline media. It was determined that the Ppy-PMB layers with heparin as a dopant were more mechanically stable in comparison to the layers doped with lactose and sucrose. Therefore, the Ppy-PMB layer doped with heparin was selected for the further experiment and it was applied in the design of electrochromic sensors for the determination of three xanthine derivatives: caffeine, theobromine, and theophylline. A linear relationship of ΔA (∆A = A+0.8V − A−0.8V) vs. concentration was determined for all three xanthine derivatives studied. The largest change in optical absorption was observed in the case of theophylline determination

    Towards the application of Al 2 O 3 /ZnO nanolaminates in immunosensors: total internal reflection spectroscopic ellipsometry based evaluation of BSA immobilization

    No full text
    International audienceIn this research Al2O3/ZnO nanolaminates were evaluated for possible application in the design of optical immunosensors. Total internal reflection ellipsometry (TIRE) was utilized to study the optical response during the formation of a bovine serum albumin (BSA) based monolayer on the surface of Al2O3/ZnO nanolaminates, which were pre-modified with a N-(3-aminopropyl)triethoxysilane (APTES) layer. The influence of the thicknesses of Al2O3 and ZnO layers on the performance of Al2O3/ZnO nanolaminate based structures has been assessed. This research has shown the noticeable contribution of multiple reflections from the interfaces between Al2O3 and ZnO for the enhancement of the optical response in a total internal reflection configuration. Al2O3/ZnO nanolaminates of 200 nm total thickness based on four 50 nm thick alternating Al2O3 and ZnO layers have shown better sensitivity than the nanolaminate based on two 100 nm oxide-layers. Real-time monitoring of the ellipsometric parameters () and () has shown that BSA was successfully covalently attached to the nanolaminate/APTES surface. The surface concentration of immobilized BSA was evaluated from the real-time data of the ellipsometric parameters () and (). The expected advantages and disadvantages of Al2O3/ZnO nanolaminates during expected application in optical immunosensors are discussed

    The substrate matters in the Raman spectroscopy analysis of cells

    Get PDF
    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research
    corecore