77 research outputs found

    Effects of Articular Cartilage Constituents on Phosphotungstic Acid Enhanced Micro-Computed Tomography

    Get PDF
    Contrast-enhanced micro-computed tomography (CE mu CT) with phosphotungstic acid (PTA) has shown potential for detecting collagen distribution of articular cartilage. However, the selectivity of the PTA staining to articular cartilage constituents remains to be elucidated. The aim of this study was to investigate the dependence of PTA for the collagen content in bovine articular cartilage. Adjacent bovine articular cartilage samples were treated with chondroitinase ABC and collagenase to degrade the proteoglycan and the collagen constituents in articular cartilage, respectively. Enzymatically degraded samples were compared to the untreated samples using CE mu CT and reference methods, such as Fourier-transform infrared imaging. Decrease in the X-ray attenuation of PTA in articular cartilage and collagen content was observed in cartilage depth of 0-13% and deeper in tissue after collagen degradation. Increase in the X-ray attenuation of PTA was observed in the cartilage depth of 13- 39% after proteoglycan degradation. The X-ray attenuation of PTA-labelled articular cartilage in CE mu CT is associated mainly with collagen content but the proteoglycans have a minor effect on the X-ray attenuation of the PTA-labelled articular cartilage. In conclusion, the PTA labeling provides a feasible CE mu CT method for 3D characterization of articular cartilage.Peer reviewe

    Anterior cruciate ligament transection alters the n-3/n-6 fatty acid balance in the lapine infrapatellar fat pad

    Get PDF
    The infrapatellar fat pad (IFP) of the knee joint has received lots of attention recently due to its emerging role in the pathogenesis of osteoarthritis (OA), where it displays an inflammatory phenotype. The aim of the present study was to examine the infrapatellar fatty acid (FA) composition in a rabbit (Oryctolagus cuniculus) model of early OA created by anterior cruciate ligament transection (ACLT).Peer reviewe

    Effects of tofacitinib in early arthritis-induced bone loss in an adjuvant-induced arthritis rat model

    Get PDF
    Objectives: The main goal of this work was to analyse how treatment intervention with tofacitinib prevents the early disturbances of bone structure and mechanics in the rat model of adjuvant-induced arthritis. This is the first study to access the impact of tofacitinib on the skeletal bone effects of inflammation. Methods: Fifty Wistar rats with adjuvant-induced arthritis were randomly housed in experimental groups, as follows: non-arthritic healthy group (n = 20); arthritic non-treated group (n = 20); and 10 animals undergoing tofacitinib treatment. Rats were monitored during 22 days after disease induction for the inflammatory score, ankle perimeter and body weight. Healthy non-arthritic rats were used as controls for comparison. After 22 days of disease progression, rats were killed and bone samples collected for histology, micro-CT, three-point bending and nanoindentation analysis. Blood samples were also collected for quantification of bone turnover markers and systemic cytokines. Results. At the tissue level, measured by nanoindentation, tofacitinib increased bone cortical and trabecular hardness. However, micro-CT and three-point bending tests revealed that tofacitinib did not reverse the effects of arthritis on the cortical and trabecular bone structure and on mechanical properties. Conclusion: Possible reasons for these observations might be related to the mechanism of action of tofacitinib, which leads to direct interactions with bone metabolism, and/or to the kinetics of its bone effects, which might need longer exposure

    Localized delivery of compounds into articular cartilage by using high-intensity focused ultrasound

    Get PDF
    Localized delivery of drugs into an osteoarthritic cartilaginous lesion does not yet exist, which limits pharmaceutical management of osteoarthritis (OA). High-intensity focused ultrasound (HIFU) provides a means to actuate matter from a distance in a non-destructive way. In this study, we aimed to deliver methylene blue locally into bovine articular cartilage in vitro. HIFU-treated samples (n = 10) were immersed in a methylene blue (MB) solution during sonication (f = 2.16 MHz, peak-positivepressure = 3.5 MPa, mechanical index = 1.8, pulse repetition frequency = 3.0 kHz, cycles per burst: 50, duty cycle: 7%). Adjacent control 1 tissue (n = 10) was first pre-treated with HIFU followed by immersion into MB; adjacent control 2 tissue (n = 10) was immersed in MB without ultrasound exposure. The MB content was higher (p 0.05). To conclude, HIFU delivers molecules into articular cartilage without major short-term concerns about safety. The method is a candidate for a future approach for managing OA.Peer reviewe

    POLG1 p.R722H mutation associated with multiple mtDNA deletions and a neurological phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The c.2447G>A (p.R722H) mutation in the gene <it>POLG1 </it>of the catalytic subunit of human mitochondrial polymerase gamma has been previously found in a few occasions but its pathogenicity has remained uncertain. We set out to ascertain its contribution to neuromuscular disease.</p> <p>Methods</p> <p>Probands from two families with probable mitochondrial disease were examined clinically, muscle and buccal epithelial DNA were analyzed for mtDNA deletions, and the <it>POLG1, POLG2, ANT1 </it>and <it>Twinkle </it>genes were sequenced.</p> <p>Results</p> <p>An adult proband presented with progressive external ophthalmoplegia, sensorineural hearing impairment, diabetes mellitus, dysphagia, a limb myopathy and dementia. Brain MRI showed central and cortical atrophy, and <sup>18</sup>F-deoxyglucose PET revealed reduced glucose uptake. Histochemical analysis of muscle disclosed ragged red fibers and cytochrome c oxidase-negative fibers. Electron microscopy showed subsarcolemmal aggregates of morphologically normal mitochondria. Multiple mtDNA deletions were found in the muscle, and sequencing of the <it>POLG1 </it>gene revealed a homozygous c.2447G>A (p.R722H) mutation. His two siblings were also homozygous with respect to the p.R722H mutation and presented with dementia and sensorineural hearing impairment. In another family the p.R722H mutation was found as compound heterozygosity with the common p.W748S mutation in two siblings with mental retardation, ptosis, epilepsy and psychiatric symptoms. The estimated carrier frequency of the p.R722H mutation was 1:135 in the Finnish population. No mutations in <it>POLG2</it>, <it>ANT1 </it>and <it>Twinkle </it>genes were found. Analysis of the POLG1 sequence by homology modeling supported the notion that the p.R722H mutation is pathogenic.</p> <p>Conclusions</p> <p>The recessive c.2447G>A (p.R722H) mutation in the linker region of the <it>POLG1 </it>gene is pathogenic for multiple mtDNA deletions in muscle and is associated with a late-onset neurological phenotype as a homozygous state. The onset of the disease can be earlier in compound heterozygotes.</p

    Bone toxicity of persistent organic pollutants

    No full text
    Abstract Persistent organic pollutants (POPs), especially dioxin-like chemicals, have been shown to have adverse effects on skeleton and these effects are likely to be mediated via the aryl hydrocarbon receptor (AHR). In spite of the extensive research, the characteristics of developmental effects of POPs are poorly known and the role of AHR in POP bone toxicity and skeletal development in general. In this project changes in bone morphology and strength as well as tissue matrix mechanics are studied by applying state of the art biomedical engineering methods. This allows understanding of the effects of dioxins exposure and AHR activity on the development and maturation of extracellular matrix in musculoskeletal tissues from a completely new perspective, and thereby improving the health risk assessment of POPs. In the present study skeletal properties of rats exposed maternally to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), Northern Contaminant Mixture (NCM) and Aroclor1254 (A1254) were studied for cross-sectional morphometric and biomechanical properties, and data were analysed with benchmark dose modelling. In addition, extracellular matrix properties were analysed using nanoindentation. Similar measurements were performed for adult wild-type and AHR-null mice after TCDD exposure. The same animals were also analysed for microstructural changes using micro-computed tomography and their bone cell activity was estimated from serum markers and gene expression. Analyses show decreased bone length and cross-sectional properties with consequently decreased bone strength. On the other hand, an increased trabecular BMD in response to NCM and A1254 was observed. In addition, bone matrix properties indicated delayed maturation or early senescence after maternal or adult exposure, respectively. The AHR is mainly responsible for bone toxicity of dioxin-like compounds and plays a role in bone development. This is likely due to disturbed bone remodeling as indicated by altered serum markers and gene expression. Overall these results indicate that POPs decrease bone strength, but the interpretation is difficult as there is more trabecular bone within cortical bone with compromised quality and increased porosity.Tiivistelmä Altistumisen pysyville orgaanisille ympäristökemikaaleille on todettu heikentävän luustoa. Dioksiinien ja dioksiininkaltaisten yhdisteiden vaikutusten on havaittu välittyvän aryylihiilivetyreseptorin (AHR) välityksellä. Huolimatta pitkään kestäneestä tutkimuksesta POP-yhdisteiden sikiönkehityksen aikaisen altistuksen vaikutukset ja etenkin niiden mekanismit ovat edelleen huonosti tunnettuja, samoin kuin AHR:n osuus POP-yhdisteiden luutoksisuudessa ja luuston kehityksessä ylipäätään. Tässä työssä tutkittiin luuston rakenteellisia ja mekaanisia ominaisuuksia niin perinteisillä kuin uusimmilla biolääketieteen tekniikan menetelmillä. Tutkimuksen tavoitteena on saada uutta tietoa POP-altistuksen ja AHR-aktiivisuuden vaikutuksista luuston kehitykseen ja luukudoksen ikääntymisprosesseihin, mikä edesauttaa kyseisten yhdisteiden riskinarviointia. Tutkimuksissa altistettiin kantavia rottaemoja 2,3,7,8-tetraklooridibenzo-p-dioksiinille (TCDD), pohjoiselle saasteseokselle ja kaupalliselle Arokloori 1254 PCB-seokselle. Sikiönkehityksen aikana altistuneiden jälkeläisten luuston poikkileikkausen morfologia ja biomekaaniset ominaisuudet mitattiin ja tulokset mallinnettiin vertailuannoksen määrittämiseksi. Lisäksi TCDD-altistettujen rottien luustomatriisin ominaisuuksia selvitettiin nanoindentaatiomenetelmällä. Samaa menetelmää käytettiin myös aikuisiässä TCDD:lle altistettujen villityypin hiirten ja AHR-poistogeenisiten hiirten tutkimiseen. Näiden hiirten luuston hienorakennetta mitattiin myös korkean resoluution mikro-tietokonetomografialla ja niiden luusolujen aktiivisuutta tutkittiin seerumin biomarkkerien ja luun muodostumiseen osallistuvien geenien ekspressiotasojen avulla. Sikiönkehityksen aikainen altistuminen pohjoiselle saasteseokselle ja Arokloori 1254:lle hidasti luiden pituuskasvua. Lisäksi luiden poikkileikkauspinta-alat olivat pienentyneet ja mekaaniset ominaisuudet heikentyneet. Toisaalta hohkaluun määrä oli lisääntynyt altistumisen seurauksena. Myös sikiönkehityksen aikainen altistuminen TCDD:lle hidasti luukudoksen kypsymistä ja johti aikuisiällä luukudoksen ennenaikaiseen vanhenemiseen. AHR:llä oli päärooli ainakin aikuisiän vaikutusten ilmenemiselle ja reseptorilla vaikutti olevan rooli luuston kehityksessä ylipäätään. Seerumin biomarkkereiden ja geeniekspression muutosten perusteella nämä vaikutukset johtuvat todennäköisesti luuston uusiutumisen häiriöistä. Yhteenvetona voidaan todeta, että POP-yhdisteet heikentävät luustoa, mutta tämän ilmiön diagnosoiminen on hankalaa, koska huonolaatuisen kuoriluun sisällä hohkaluun määrä on lisääntynyt

    Advantages and limitations of micro-computed tomography and computed tomography imaging of archaeological textiles and coffins

    No full text
    Abstract We have recently studied northern Finnish archaeological textiles extensively using computed tomography (CT) imaging. These textiles have been found in inhumation burials from the Late Medieval church of Valmarinniemi in Keminmaa and the Postmedieval church of Haukipudas. In this article we discuss the advantages and limitations of CT imaging based on three case studies. Based on the research objectives and the size of studied items, we utilised three different CT scanners: clinical systems and micro- and nano-scale X-ray microscopes. We were able to visualise a child’s coffin and a doll inside, which is a larger scale sample. We were also able to study and reconstruct the complicated structure of a tablet-woven band, as well as identifying individual fibres when examining smaller textile samples with submicron resolution. Even though we observed some limitations in the image quality, we conclude that computed tomography has great potential in the research of archaeological textiles in both 3D and cross-sections and is often easier and more informative than conventional microscopic or other archaeological methodologies

    Breastfeeding in low-income families of the turn of the 19th-century town of Rauma, Southwestern Finland, according to stable isotope analyses of archaeological teeth

    No full text
    Abstract We explore breastfeeding practices among low-income families in the late 18th to early 19th-century town of Rauma in Southwestern Finland. The breastfeeding practices in the area of the current nation of Finland (at the time belonging to first Sweden and then Russia) had been under debate. While in certain regions artificial infant feeding was common and was linked to high infant mortality, breastfeeding was also known to be practiced in certain regions of Finland. To explore this, we analyzed the δ15N and δ13C values in collagen of horizontally cut dentin segments of permanent first molars (M1; n = 7) collected from 19th century human skeletal remains from the deconsecrated Holy Trinity churchyard excavated in 2016. The resulting isotopic profiles were similarly patterned across the seven individuals. The emerging pattern revealed a period of exclusive breastfeeding during approximately the first six months of life, followed by weaning until the latter half of the second year. We further investigated diet during mid-childhood by comparing the stable isotope ratios in collagen of the M1 and premolar roots. This comparison suggested that the mid-childhood diets may have contained more plant-based foods than those consumed earlier in childhood

    Chemical imaging of human teeth by a timeresolved Raman spectrometer based on a CMOS single-photon avalanche diode line sensor

    No full text
    Abstract Raman spectroscopy is a powerful analytical tool to be used in many biomedical applications and could be potentially translated into clinical work. The challenge of Raman spectroscopy in biomedical applications is the high inherent fluorescence of biological samples. One promising method to suppress the fluorescence background is to use pulsed lasers and time-gated detectors but the complexity of time-gated systems has hindered their widespread usage. We present here chemical imaging of human teeth by means of a new kind of compact and practical fluorescence-suppressed Raman spectrometer based on a time-resolved 16 × 256 CMOS single-photon avalanche diode (SPAD) line sensor with an integrated 256-channel 3-bit on-chip time-to-digital converter. The chemical images were constructed by utilizing a simple unsupervised machine learning algorithm (k-means clustering). The high quality of Raman spectra measured with the time-resolved CMOS SPAD-based Raman spectrometer was verified by comparing the spectra to those collected with a commercial conventional continuous wave (CW) Raman spectrometer. The spectra measured by using the time-resolved CMOS SPAD-based Raman spectrometer had 4.4–8.8 times higher signal to peak-to-peak noise ratio values than the spectra from the CW Raman spectrometer when the same radiant exposure (∼300 J mm−2) was used with both spectrometers. This paper shows in practice the potential of time-resolved CMOS SPAD-based Raman spectroscopy in the field of biomedicine and we expect that the presented technology could pave the way for the development of new kind of compact and practical fluorescence-suppressed Raman spectrometers to be used both in biomedical research and clinical settings

    Experimental mechanical strain measurement of tissues

    No full text
    Abstract Strain, an important biomechanical factor, occurs at different scales from molecules and cells to tissues and organs in physiological conditions. Under mechanical strain, the strength of tissues and their micro- and nanocomponents, the structure, proliferation, differentiation and apoptosis of cells and even the cytokines expressed by cells probably shift. Thus, the measurement of mechanical strain (i.e., relative displacement or deformation) is critical to understand functional changes in tissues, and to elucidate basic relationships between mechanical loading and tissue response. In the last decades, a great number of methods have been developed and applied to measure the deformations and mechanical strains in tissues comprising bone, tendon, ligament, muscle and brain as well as blood vessels. In this article, we have reviewed the mechanical strain measurement from six aspects: electro-based, light-based, ultrasound-based, magnetic resonance-based and computed tomography-based techniques, and the texture correlation-based image processing method. The review may help solving the problems of experimental and mechanical strain measurement of tissues under different measurement environments
    corecore