769 research outputs found

    Bilarge neutrino mixing from supersymmetry with high-scale nonrenormalizable interactions

    Get PDF
    We suggest a supersymmetric (SUSY) explanation of neutrino masses and mixing, where nonrenormalizable interactions in the hidden sector generate lepton number violating Majorana mass terms for both right-chiral sneutrinos and neutrinos. It is found necessary to start with a superpotential including an array of gauge singlet chiral superfields. This leads to nondiagonal ΔL=2\Delta L = 2 mass terms and almost diagonal SUSY breaking AA-terms. As a result, the observed pattern of bilarge mixing can be naturally explained by the simultaneous existence of the seesaw mechanism and radiatively induced masses. Allowed ranges of parameters in the gauge singlet sector are delineated, corresponding to each of the cases of normal hierarchy, inverted hierarchy and degenerate neutrinos.Comment: 19 pages, 5 figures. Minor modifications are made in the title and the text, some new references are added. To appear in this form in Physical Review

    Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe

    Get PDF
    Recent results from the SNO, Super-Kamiokande and Borexino experiments do not show the expected upturn of the energy spectrum of events (the ratio RNobs/NSSMR \equiv N_{obs}/N_{SSM}) at low energies. At the same time, cosmological observations testify for possible existence of additional relativistic degrees of freedom in the early Universe: ΔNeff=12\Delta N_{eff} = 1 - 2. These facts strengthen the case of very light sterile neutrino, νs\nu_s, with Δm012(0.72)105\Delta m^2_{01} \sim (0.7 - 2) \cdot 10^{-5} eV2^2, which mixes weakly with the active neutrinos. The νs\nu_s mixing in the mass eigenstate ν1\nu_1 characterized by sin22α103\sin^2 2\alpha \sim 10^{-3} can explain an absence of the upturn. The mixing of νs\nu_s in the eigenstate ν3\nu_3 with sin2β0.1\sin^2 \beta \sim 0.1 leads to production of νs\nu_s via oscillations in the Universe and to additional contribution ΔNeff0.71\Delta N_{eff} \approx 0.7 - 1 before the big bang nucleosynthesis and later. Such a mixing can be tested in forthcoming experiments with the atmospheric neutrinos as well as in future accelerator long baseline experiments. It has substantial impact on conversion of the supernova neutrinos.Comment: 27 pages, LaTeX, 14 eps figures, 3 figures and additional considerations adde

    On in situ Determination of Earth Matter Density in Neutrino Factory

    Full text link
    We point out that an accurate in situ determination of the earth matter density \rho is possible in neutrino factory by placing a detector at the magic baseline, L = \sqrt{2} \pi / G_{F} N_{e} where N_{e} denotes electron number density. The accuracy of matter density determination is excellent in a region of relatively large theta_{13} with fractional uncertainty \delta \rho / \rho of about 0.43%, 1.3%, and \lsim 3% at 1 sigma CL at sin^2 2theta_{13}=0.1, 10^{-2}, and 3 x 10^{-3}, respectively. At smaller theta_{13} the uncertainty depends upon the CP phase delta, but it remains small, 3%-7% in more than 3/4 of the entire region of delta at sin^2 2theta_{13} = 10^{-4}. The results would allow us to solve the problem of obscured CP violation due to the uncertainty of earth matter density in a wide range of theta_{13} and delta. It may provide a test for the geophysical model of the earth, or it may serve as a method for stringent test of the MSW theory of neutrino propagation in matter once an accurate geophysical estimation of the matter density is available.Comment: 21 pages, 4 figures, version to appear in PR

    Neutrino oscillations in low density medium

    Full text link
    For the case of small matter effects: VΔm2/2EV \ll \Delta m^2/2E, where VV is the matter potential, we develop the perturbation theory using ϵ2VE/Δm2\epsilon \equiv 2VE/\Delta m^2 as the expansion parameter. We derive simple and physically transparent formulas for the oscillation probabilities in the lowest order in ϵ\epsilon which are valid for arbitrary density profile. The formulas can be applied for propagation of the solar and supernova neutrinos in matter of the Earth, substantially simplifying numerical calculations. Using these formulas we study sensitivity of the oscillation effects to structures of the density profile situated at different distances from the detector dd. We show that for the mass-to-flavor state transitions, {\it e.g.}, ν2νe\nu_2 \to \nu_e, the sensitivity is suppressed for remote structures: d>lνE/ΔEd > l_{\nu} E/\Delta E, where lνl_{\nu} is the oscillation length and ΔE/E\Delta E/E is the energy resolution of detector.Comment: discussion simplified, clarifications adde

    Test of Fermi Gas Model and Plane-Wave Impulse Approximation Against Electron-Nucleus Scattering Data

    Full text link
    A widely used relativistic Fermi gas model and plane-wave impulse approximation are tested against electron-nucleus scattering data. Inclusive quasi-elastic cross section are calculated and compared with high-precision data for C, O, and Ca. A dependence of agreement between calculated cross section and data on a momentum transfer is shown. Results for the C(nu_mu,mu) reaction are presented and compared with experimental data of the LSND collaboration.Comment: 10 pages, 8 figure

    Effects of CPT and Lorentz Invariance Violation on Pulsar Kicks

    Full text link
    The breakdown of Lorentz's and CPT invariance, as described by the Extension of the Standard Model, gives rise to a modification of the dispersion relation of particles. Consequences of such a modification are reviewed in the framework of pulsar kicks induced by neutrino oscillations (active-sterile conversion). A peculiar feature of the modified energy-momentum relations is the occurrence of terms of the form \delta {\bbox \Pi}\cdot {\bf {\hat p}}, where \delta {\bbox \Pi} accounts for the difference of spatial components of flavor depending coefficients which lead to the departure of the Lorentz symmetry, and p^=p/p{\bf {\hat p}}={\bf p}/p, being p{\bf p} the neutrino momentum. Owing to the relative orientation of p{\bf p} with respect to \delta {\bbox \Pi}, the {\it coupling} \delta {\bbox \Pi}\cdot {\bf {\hat p}} may induce the mechanism to generate the observed pulsar velocities. Topics related to the velocity distribution of pulsars are also discussed.Comment: 10 pages, 1 figur

    Dark matter sterile neutrinos in stellar collapse: alteration of energy/lepton number transport and a mechanism for supernova explosion enhancement

    Get PDF
    We investigate matter-enhanced Mikheyev-Smirnov-Wolfenstein (MSW) active-sterile neutrino conversion in the νeνs\nu_e \rightleftharpoons \nu_s channel in the collapse of the iron core of a pre-supernova star. For values of sterile neutrino rest mass msm_s and vacuum mixing angle θ\theta (specifically, 0.5keV5×10120.5 {\rm keV} 5\times{10}^{-12}) which include those required for viable sterile neutrino dark matter, our one-zone in-fall phase collapse calculations show a significant reduction in core lepton fraction. This would result in a smaller homologous core and therefore a smaller initial shock energy, disfavoring successful shock re-heating and the prospects for an explosion. However, these calculations also suggest that the MSW resonance energy can exhibit a minimum located between the center and surface of the core. In turn, this suggests a post-core-bounce mechanism to enhance neutrino transport and neutrino luminosities at the core surface and thereby augment shock re-heating: (1) scattering-induced or coherent MSW νeνs\nu_e\to\nu_s conversion occurs deep in the core, at the first MSW resonance, where νe\nu_e energies are large (150\sim 150 MeV); (2) the high energy νs\nu_s stream outward at near light speed; (3) they deposit their energy when they encounter the second MSW resonance νsνe\nu_s\to\nu_e just below the proto-neutron star surface.Comment: 13 pages, 9 figure

    Simultaneous Flavor Transformation of Neutrinos and Antineutrinos with Dominant Potentials from Neutrino-Neutrino Forward Scattering

    Full text link
    In astrophysical environments with intense neutrino fluxes, neutrino-neutrino forward scattering contributes both diagonal and off-diagonal potentials to the flavor-basis Hamiltonian that governs neutrino flavor evolution. We examine a special case where adiabatic flavor evolution can produce an off-diagonal potential from neutrino-neutrino forward scattering that dominates over both the corresponding diagonal term and the potential from neutrino-matter forward scattering. In this case, we find a solution that, unlike the ordinary Mikeyhev-Smirnov-Wolfenstein scenario, has both neutrinos and antineutrinos maximally mixed in medium over appreciable ranges of neutrino and antineutrino energy. Employing the measured solar and atmospheric neutrino mass-squared differences, we identify the conditions on neutrino fluxes that are required for this solution to exist deep in the supernova environment, where it could affect the neutrino signal, heavy-element nucleosynthesis, and even the revival of the supernova shock. We speculate on how this solution might or might not be attained in realistic supernova evolution. Though this solution is ephemeral in time and/or space in supernovae, it may signal the onset of subsequent appreciable flavor mixing for both neutrinos and antineutrinos. A similar solution may also exist in an early universe with significant net neutrino-lepton numbers.Comment: 16 pages; 4 figures; RevTe

    Genes associated with ant social behavior show distinct transcriptional and evolutionary patterns

    No full text
    Studies of the genetic basis and evolution of complex social behavior emphasize either conserved or novel genes. To begin to reconcile these perspectives, we studied how the evolutionary conservation of genes associated with social behavior depends on regulatory context, and whether genes associated with social behavior exist in distinct regulatory and evolutionary contexts. We identified modules of co-expressed genes associated with age-based division of labor between nurses and foragers in the ant Monomorium pharaonis, and we studied the relationship between molecular evolution, connectivity, and expression. Highly connected and expressed genes were more evolutionarily conserved, as expected. However, compared to the rest of the genome, forager-upregulated genes were much more highly connected and conserved, while nurse-upregulated genes were less connected and more evolutionarily labile. Our results indicate that the genetic architecture of social behavior includes both highly connected and conserved components as well as loosely connected and evolutionarily labile components.It was funded by University of Pennsylvania with grant name: University Research Foundation grant
    corecore