732 research outputs found

    Effects of energetic particles on zonal flow generation by toroidal Alfven eigenmode

    Full text link
    Generation of zonal ow (ZF) by energetic particle (EP) driven toroidal Alfven eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found that, nonlinear resonant EP contri- bution dominates over the usual Reynolds and Maxwell stresses due to thermal plasma nonlinear response. ZF can be forced driven in the linear growth stage of TAE, with the growth rate being twice the TAE growth rate. The ZF generation mechanism is shown to be related to polarization induced by resonant EP nonlinearity. The generated ZF has both the usual meso-scale and micro- scale radial structures. Possible consequences of this forced driven ZF on the nonlinear dynamics of TAE are also discussed.Comment: To be submitted to Physics of Plasma

    Boundary value problems of elasticity theory for plane domains with one-dimensional elastic reinforcements

    Get PDF
    This article is a translation of an article published in Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No 1, pp 103-114 Jan-Feb 1991.Many authors have examined problems related to the load transmission from an elastic rod to an elastic plane. It was assumed in the majority of investigationa that the stringer is a thin rectilinear rod transmitting only longitudinal forces while the rod contact with the plane is realized along a line. different modifications of sheet contact with a rectilinear tensile stringer considered as an inner stringer of finite length or as an infinite edge stringer were analyzed in [1, 2]. Problems about the reinforcement of holes in a plate by a thin rod of constant section that possesses bending and longitudinal stiffnesses were solved in [3]. The eccentricity of the connection between the shell middle surface and the rod was taken into account in [4] in a study of shells reinforced by thin curvilinear rods. Other models of the one-dimensional element connected to an elastic medium without taking account of its bending stiffness were analyzed in [5, 6]. Solutions of a number of problems with circular reinforcing elements are obtained in [7]. An isotropic finite or infinite, linearly elastic plate reinforced along part or all of the boundary and along certain internal lines by elastic curvilinear rods possessing variable longitudinal and bending stiffnesses, variable curvature and thickness, the eccentricity of the connection to the plate and with an arbitrary transverse section shape symmetric relative to the plate middle surface are studied in this paper. Boundary conditions on the line of plate contact with the inner or edge elastic rods are obtained for the reinforcement models generalizing [1, 2] by using the theory of elastic rods in the case of a plane state of stress. Existence and uniqueness theorems are proved for appropriate boundary value problems; the singularity of the stresses at angles and tips of the rods are proved. The relationships obtained carry over completely to the plane strain problem for an elastic cylinder reinforced by homogeneous cylindrical shells along the generator. Some of the results described here are represented in [8]

    A Landau fluid model for warm collisionless plasmas

    Full text link
    A Landau fluid model for a collisionless electron-proton magnetized plasma, that accurately reproduces the dispersion relation and the Landau damping rate of all the magnetohydrodynamic waves, is presented. It is obtained by an accurate closure of the hydrodynamic hierarchy at the level of the fourth order moments, based on linear kinetic theory. It retains non-gyrotropic corrections to the pressure and heat flux tensors up to the second order in the ratio between the considered frequencies and the ion cyclotron frequency.Comment: to appear in Phys. Plasma

    Magnetospheric eclipses in the double pulsar system J0737-3039

    Get PDF
    We argue that eclipses of radio emission from the millisecond pulsar A in the double pulsar system J0737-3039 are due to synchrotron absorption by plasma in the closed field line region of the magnetosphere of its normal pulsar companion B. A's radio beam only illuminates B's magnetosphere for about 10 minutes surrounding the time of eclipse. During this time it heats particles at r\gtrsim 10^9 cm to relativistic energies and enables extra plasma to be trapped by magnetic mirroring. An enhancement of the plasma density by a factor \sim 10^2 is required to match the duration and optical depth of the observed eclipses. The extra plasma might be supplied by a source near B through B\gamma pair creation by energetic photons produced in B's outer gap. Excitation of pairs' gyrational motions by cyclotron absorption of A's radio beam can result in their becoming trapped between conjugate mirror points in B's magnetosphere. Because the trapping efficiency decreases with increasing optical depth, the plasma density enhancement saturates even under steady state illumination. The result is an eclipse with finite, frequency dependent, optical depth. After illumination by A's radio beam ceases, the trapped particles cool and are lost. The entire cycle repeats every orbital period. We speculate that the asymmetries between eclipse ingress and egress result in part from the magnetosphere's evolution toward a steady state when illuminated by A's radio beam. We predict that A's linear polarization will vary with both eclipse phase and B's rotational phase.Comment: 8 pages, 1 figure, submitted to ApJ, references corrected, detectability of reprocessed emission revised, major conclusions unchange

    Reevaluation of the Braginskii viscous force for toroidal plasma

    Full text link
    The model by Braginskii for the viscous stress tensor is used to determine the shear and gyroviscous forces acting within a toroidally confined plasma. Comparison is made to a previous evaluation which contains an inconsistent treatment of the radial derivative and neglects the effect of the pitch angle. Parallel viscosity contributes a radial shear viscous force which may develop for sufficient vertical asymmetry to the ion velocity profile. An evaluation is performed of this radial viscous force for a tokamak near equilibrium which indicates qualitative agreement between theory and measurement for impure plasma discharges with strong toroidal flow.Comment: 14 pages, 7 figures, minor revision, final versio

    2D continuous spectrum of shear Alfven waves in the presence of a magnetic island

    Full text link
    The radial structure of the continuous spectrum of shear Alfven modes is calculated in the presence of a magnetic island in tokamak plasmas. Modes with the same helicity of the magnetic island are considered in a slab model approximation. In this framework, with an appropriate rotation of the coordinates the problem reduces to 2 dimensions. Geometrical effects due to the shape of the flux surface's cross section are retained to all orders. On the other hand, we keep only curvature effects responsible of the beta induced gap in the low-frequency part of the continuous spectrum. New continuum accumulation points are found at the O-point of the magnetic island. The beta-induced Alfven Eigenmodes (BAE) continuum accumulation point is found to be positioned at the separatrix flux surface. The most remarkable result is the nonlinear modification of the BAE continuum accumulation point frequency

    Instabilities for a relativistic electron beam interacting with a laser irradiated plasma

    Full text link
    The effects of a radiation field (RF) on the unstable modes developed in relativistic electron beam--plasma interaction are investigated assuming that ω0>ωp\omega_{0} >\omega_{p}, where ω0\omega_{0} is the frequency of the RF and ωp\omega_{p} is the plasma frequency. These unstable modes are parametrically coupled to each other due to the RF and are a mix between two--stream and parametric instabilities. The dispersion equations are derived by the linearization of the kinetic equations for a beam--plasma system as well as the Maxwell equations. In order to highlight the effect of the radiation field we present a comparison of our analytical and numerical results obtained for nonzero RF with those for vanishing RF. Assuming that the drift velocity ub\mathbf{u}_{b} of the beam is parallel to the wave vector k\mathbf{k} of the excitations two particular transversal and parallel configurations of the polarization vector E0\mathbf{E}_{0} of the RF with respect to k\mathbf{k} are considered in detail. It is shown that in both geometries resonant and nonresonant couplings between different modes are possible. The largest growth rates are expected at the transversal configuration when E0\mathbf{E}_{0} is perpendicular to k\mathbf{k}. In this case it is demonstrated that in general the spectrum of the unstable modes in ω\omega --kk plane is split into two distinct domains with long and short wavelengths, where the unstable modes are mainly sensitive to the beam or the RF parameters, respectively. In parallel configuration, E0∥k\mathbf{E}_{0} \parallel \mathbf{k}, and at short wavelengths the growth rates of the unstable modes are sensitive to both beam and RF parameters remaining insensitive to the RF at long wavelengths.Comment: 23 pages, 5 figure
    • …
    corecore