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Boundary value problems of elasticity theory for plane domains with
one-dimensional elastic reinforcements

S. E. Mikhailov and I. V. Namestnikova

Many authors have examined problems related to the load transmission from an elastic
rod to an elastic plane. It was assumed in the majority of investigations that the stringer
is a thin rectilinear rod transmitting only longitudinal forces while the rod contact with
the plane is realized along a line. Different modifications of sheet contact with a recti-
linear tensile stringer considered as an inner stringer of finite length or as an infinite
edge stringer vere analyzed in [1, 2]. Problems about the reinforcement of holes in a plate
by a thin rod of constant section that possesses bending and longitudinal stiffnesses were-
solved in [3]. The eccentricity of the connection between the shell middle surface and the
rod was taken into account in [4] in a study of shells reinforced by thin curvilinear rods.
Other models of the one-dimensional element connected to an elastic medium without taking
account of its bending stiffness were analyzed in [5, 6]. Solutions of a number of problems
with circular reinforcing elements are obtained in [7].

An isotropic finite or infinite, linearly elastic plate reinforced along part or all of
the boundary and along certain internal lines by elastic curvilinear rods possessing variable
longitudinal and bending stiffnesses, variable curvature and thickness, the eccentricity of
the connection to the plate and with an arbitrary transverse section shape symmetric relative
to the plate middle surface are studied in this paper. Boundary conditions on the line of
plate contact with the inner or edge elastic rods are obtained for the reinforcement models
generalizing [1, 2] by using the theory of elastic rods in the case of a plane state of
stress., Existence and uniqueness theorems are proved for appropriate boundary value problems;
the singularity of the stresses at angles and tips of the rods are proved. The relationships
obtained carry over completely to the plane strain problem for an elastic cylinder reinforced
by homogeneous cylindrical shells along the generator. Some of the results described here
are represented in [8].

1. ONE-DIMENSIONAL CURVILINEAR REINFORCEMENTS

Let % be a Cartesian coordinate system whose plane (x;, x,) agrees with the plane of
the rod central axis L, (the line of centers of gravity of its transverse sections) that is
a plane piecewise-smooth curve without reentry points, and let xi° be coordinates of the
points of L,. Let us parametrize the central axis by using the arc length 1, and let us
denote the rod transverse section by &(t), the boundary of the transverse section by 3a(1),
and its area by A(t). TFurthermore, unless specified otherwise, we consider the subscripts
on the subscripted parameters to vary between 1 and 2 and understand summation between these
limits over repeated subscripts. Let us introduce the vector tangent to the central axis
ki® = %;°(1) and its normal ny%(t) = eijkj“(1), where ejj is an alternating symbol: e;, =
—-,; =1, e;, =e,, =0, and the dot overhead denotes the derivative with respect to 1. We
assume one of the principal axes of inertia of the rod transverse section lies in the (x,
%,) plane.

Let bulk forces fi(x) act on the rod, while an external surface load Ti(x)' Fyi(1) is
applied to the rod side surface, 1, is the principal vector of forces in the transverse sec-
tion of the rod T < 7, acting on its part with coordinates T > 1, from the side of the part
M(t;) is the moment of these forces relative to the center of the gravity of the transverse
section {(the moment acting counterclockwise is considered gositive), vi%(t) is the displace-
ment of the rod central axis. We designate the nodes IR(“ (a = 1-Ng) of the line L, its
angular points, where we will consider conditions of rigid connection of parts of the rod
given and also points where concentrated (on sections passing through these points) forces
and moments are given.
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Let the boundary conditions

Fi(t)) = — F0 3 (1)) = — MW, Fi(v)) = F¥, M () = UM% (1.1)

be given on the ends of the rod 1,, 7, (t, > 1;). If the rod is closed, we select a point

T, such that no forces or moments would be cencentrated there, then the boundary conditions
(1.1) are replaced there by continuity conditions for the forces, moments, displacements, and
rotations

Fi@ =M@ =0, 5, =1+ (1.2)

! () 2 = o (1) n (1) 1 o= 0, (1.3)

We have at the nodes TR(G)

Fi(dP +0) = Fi(t9—0) = = Fi, M (28 +0) — 0 (7 — 0)= — %%,
t:g(t%)-i-ﬂ)"—v?(‘zgl——())zo, (1.4)
o (19 4 0) nf (¢ + 0) — v (¥ — 0) i («ff? — 0) = 0.

Here Fi(j), Fﬁi(u) are given forces, M(j), MR(u) are given bending moments, and ¢ is the
length of L,, j =1, 2.

Let & = (x5 = x4°(1))n;°(1) be the projection of the radius-vector connecting the center
of gravity of the transverse section with an arbitrary point of the section on the normal
n;%(t). Using the hypothesis of plane sections, we represent the displacement of a point of
the rod that does not lie on the central axis with coordinates xj(t, £) = x;(1, 0) + &n;°(1)

[9]

v (T, B = i (1, B) — 13 (1, 8) =0 (1) — Z&f’n?vf (1),

(1) = vi(r, 0), 2} (1) = (7, 0) (1.5)

(xy and x;i' are coordinates of a point before and after deformation). It is taken into ac-
count in deriving (1.5) that under conditions of smallness of the angles of rctation

dz? dr . : 04 0
= ei; __"_d‘lf,d'l." ey (kﬂ <+ uﬁ) (1— A:?vf} e n — kv (1) n; (1),

Neglecting transverse stesses in the rod, setting |[£| < 1 and using the Hooke's law,
after integrating over Q we express the longitudinal force F;(7)k;°(t) acting in the trans-
verse section of the rod and the bending moment M(t) relative to the center of gravity in
terms of the displacement of the central axis

Fi(m) I (1) = (6 -+ 3Gy) ulkd + 46, (ndif)
M @)= — Gy L300 + (nod) ], (1.6)
6@ = £ (DA, G = K7 @),  TE= | B+ @y

(1)

Here x(1) = k;%n;® is the curvature of the rod central axis (x > 0 if the center of the
tangent circle lies to the left of the rod during a positive transversal), E(r) is the Young's
modulus of the rod material, and G and G; are the rod longitudinal and bending stiffnesses.

The rod equilibrium equations in the notation used are written in the form {4, 9]
Ff;(t)=—p((T),M(T)—F,-(T)n?{T)=-—m('c); (1.7)
po= [ [F@yaa+ [ Tomya,

o 89(7)



()= [ [MEd a0+ | Takoyar, (1.8)

(1) at)

T, 8= {1 + 10t + BE))S

where p;(1) and m(1) are the linear forces and moments that occur during transfer of the
bulk load f and surface load T1 acting on the rod over the line L;, and are distributed
along the rod central axis. Together with the boundary conditions (1,1)-(1.4) the relation-
ships (1.6) and (1.7) vield a complete system of equations for plane curvilinear rods. Fur-
thermore, rods are examined for which the longitudinal and bending stiffnesses are 0 < G,

G, < @ while the curvature is [x| < o.

We shall consider the set of functions {v;%(t), Fi{t), M(7)} on the line L, tc belong

to the class H(IJ(LD) if the functions vi°(t), vi®(t)n;%(1), F4(1), M(1) are absolutely con-
tinuous at all points of L, with the exception, perhaps, of the nodal points, satisfy (1.6)
almost everywhere on L;, and have finite left and right limits at the nodes.

Let the set {v;i°, Fy, M}, {v;*%, Fi¥, M*} e #(r). We introduce the notation

9 (o0, W0: = [ {Guhdof ) + G, [yl + (ndod) [l + (nfo) 1] dn = (1.9)

Ly

‘ 1
j [ia (B + o) (53 + xM*) + - MM*}d‘r

Ly

Then setting P; = —F;, m =~ + Fin;°, by using integration by parts we obtain the Green's
formula for the rod

2. (0, ") = 3 (pw!® — moi®n) dr +
Lﬂ

+ {F- (1) ef®(x) — M (1) v (v nd (TD)]tz -

40

— 2 [Fimu* @) — M (1) ) nl (0] 0y

o=

(1.10)

where the sum is taken over all nodal points TR(u) and the components for the tips t,, T,
drog out if the rod is closed. Taking into account that the rod elastic energy is <v?,

t) > 0 pecause of (1.9), it is easy to prove a uniqueness theorem for the rod: the solu-
tion of the problem (1.6), (1.7), (1.1)-(1.4) in the class H'T) is unique to the accuracy of
a rigid shift with the rotation vg;(1) = C; + Caex;°(1).

Setting vi*? = Cj or vi*! = eijxja in (1.9), we also have that it is necessary for the

existence of a solution to the problem (1.6), (1.7), (1.1)-(1.4) in H(Y) that the sums of the
forces and moments applied to the rod be zero

Y Px(T}dT-i‘ F(l)+ r{!)_l_ 2.1 F(a) 0: (1.11)

=1
ll

[ Ii@egad) ~m @] de + e} (1) + PPeial (1) — MO — M@ + 2 [Fee! () — M) = 0. (1.12)

I‘o

Because of (1.2) the tip terms Fi(j), M(3), j = 1, 2 drop out of these relations for a
closed rod.

The relationships (1.6) and (1.7) can be integrated, then

vl =i + Ci + Coei(1), vhi(T: p) = (1.13)

T n
=15IEUDth+aﬁﬂﬂfMHkﬂﬂ%—ﬂﬂn]lamﬂﬂ(n”+bm”ﬂfm°}dm

T, T

-
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Nt p): = Fi (0% p) R, Fin® p) = — | iyt + Fifrop) —

o
i

[y

e Y 7?
— 3 R Menpy == a0 ) e | gy mmar+ (1.14)
T‘i%)%fl 7 T, T,
+ Pyl p)yt (08 - M (ty; p)— E{MW%ﬂh%Hﬁ+M%-
T <

Here and henceforth y;1(n®) = eij[XjD(n“) - xj“(Tl)]; a(n®) = x(n®)/G{n®); b{n?%) = 1/G,(n®) +
x*(n?)/6(n°); g(n°) = 1/6(n") and the set of external loads for the rod {p;, m, FRi(a),
Mp(®)} is denoted by the symbol p without subscripts. The constants Cy (a = 1-3) in (1.13)

are arbitrary by virtue of the uniqueness theorem. Conditions on the jump (1.4) were taken
into account to obtain (1.14).

It is also necessary to put Fi(t;; p) = -Fi(l), M(1,; p) = (1) to satisfy the first
pair of conditions (1.1) at the ends of an open rod. As is easily seen, the second pair of
conditions in (1.1) reduces to the solvability conditions (1.11) and (1.12) of the problem
for a rod in the original formulation (1.6), (1.7), (1.1)-(1.4).

The relationships (1.13) and (1.14) can be rewritten in the form

voi (¥) (13 p) = j[m@+nmmum+nﬂ%rwm+wmﬁc MY 4

¥y

(1.15)
3 [0 sy )£+ 10 o 9 91 B ey ),
where H(t) is the Heaviside function and I}, M{™ are Volterra operators
Ty Ty
[1p] (x0) = [ 101, 8 s () e, [10E™m] xy) = | 0™ (x,, ym)
’I'l -\1
1.16
It 50 ) = — 1) [R50 £ (09— 0 20 (6} 0 — w3 )] + (1:16)

4 1 (1) 1Ej (1) — E3 () — y; (0B (r) — B),
™ (1, 1) = — ki (v) @ (v) + 0l (1) (B (1) — B (1)

Here the functions E;, B are determined in terms of the rod stiffness and geometry

T T

B() = § b, £ = | La(t) [0 + 100 41 09)] + 91 ()6, 0] i

I! ‘(1

After substituting (1.14) into the force and moment continuity conditioms (1.2) for a
closed rod, we arrive at the solvability conditions (1.11}, (1.12), just as for the open rod
(if the end terms are discarded there). If the stiffnesses are ¢ < (G(1), G;(1)) < = at
least at some part of the curve L,, then by taking account of the Green's formula (1.10) it
can be shown that the continuity conditions for the displacements and angles of rotation
(1.3), not utilized up to now, are necessary and sufficient for determination of the three
unknown constants Fi(t;; p) and M{7;, p) in the form of functionals of p; and m. Substi-
tuting these values for the constants into (1.15), we obtain

Np
(T3 p) = Y (Mg + T () + 3 (100 o ) PR+
==

T

(1.17)

£ T o ) M (g =) + 3 ) FEY 0 (e ) 9,

where the operators IL,,!I ™ are sums of the Volterra operators Ihpllgm) represented in



(1.16) and finite-dimensional (degenerate) operators

[Miips) (t) = [Hi;PJ] (t) + E I15; (1, 1) p; (t)

0

[0m] (rg) = [08™m] (r) + | 0§ (50 y m @),
Ly

T (4, ) = — K8 () [— 8 (1) s €) ¢ () — (1) (550 + v () s (O] +
+ 1 (1) [— i (1) B (v0) — 50 B (o)l
0™ (5, 1) = — & (7g) [— RS (v 1™ (8) g (v) — 2 (70) (£ (0) +
+ ()1 )] + 1 () [— S () Ealry) — £ () B (%))

(1.18)

The functions Najs CJ, na(m) C(m) are determined explicitly in terms of the rod curva-
ture and geometry

=B+, E=Er+1), B (=B"—B(@),E (t)=E — Ei(x),
L =[E @— i@ BY (0 — i (0)]/B% m (1) = (27w (1), (1.19)
()i = (5:1Q0 — Qu)/AN, AN = QHQN—-QHQH, Q,,_J“ - EYES,
0y (1) = [1(0) — vt () B ()] B — [E; (1) — v} (1) B (r]E

L (ry = § g o) [ ) + (0% s 09 TR0 00) + 0% g 9] +
T
+ (16, () g (0 %] dn?,
L= L+ 0 L (@) = 15— 1 (} T]f""(} (@™ )uol™ (1),
(M) = [EW (1) — BY @] /57, 0" (1) = B (1) B — EIBY (v).

As already mentioned, by virtue of the Green's formula the relationships (1.19) yield
bounded kernels if I;°, Hij(um) at some part of the curve Ly 0 < (G(1), G;(1)) < =, When
G(t) = G,(t) = = on the whole rod, it is necessary to set vy; = 0. And when either the longi-
tudinal stiffness is G(t) = = or the bending stiffness is G,(t) = = at each point of L, the
conditions (1.3) can already not be necessary and sufficient to determine the forces Fj(t,;

p) and moments M(t,; p), however the displacements v;° will nevertheless be determined and
unique to the accuracy of constants C; and the functions v;,° are representable in the form

(1.17), where the kernels Ii;;%, I .(°m) can be obtained by passing te the limit from (1.18)
d (1.19). H H
an

The equations presented in this section and the reasoning are carried over also to cylin-
drical shells homogeneous along the generators that are under plane deformation conditions
if G(1) = E(1)2h(t)/(1 = v2(1)) is the linear longitudinal stiffness, G,(t) = E(t)[2h(1)]13/
[12(1 = v3(1))] is the linear bending stiffness of the shell and are set in (1.6) below (E,
v, and 2h is the Young's modulus, Poisson ratio, and thickness of the shell). The distributed
forces and moments referred to the middle surface will be taken as p;(t) and m(t)

b

P = | O OREDE + 0 (50 T (0 — b5, ) oo (0)

h

By )
m(m) = [ e HWEA e+ 8 (v ks ( t) Tig (1) K (1) — B(w, ho) b () T () e ()
hio

2. BOUNDARY VALUE PROBLEMS FOR PLATES WITH ONE-DIMENSIONAL
ELASTIC REINFORCEMENTS

Let us consider a finite or infinite simply connected or nonsimply connected homogeneous
linearly elastic plate D of constant thickness H, reinforced along a certain part L. of the



boundary 8D by edge rods (stringers) with axes Ly while there are alsc still internal rods
with axes L in elongated cavities with edges Ly+. The total number (connected parts) of
stringers equals N. Let uj(x}, oij(x) be the mean displacement and stress with respect to

thickness in the plate. Then the Lamé equations
(A* - wupy + pagyy =0 (2.1)

are valid for a plate in the plane stress state (A% = 2Au/(A + 2 ), A and y are Lamé con-
stants).

Let us write down the boundary conditions for these equations generated by the rod rein-
forcements. Force transmission from the stringer to the plate can be described by different
methods [1, 2]. For definiteness, we consider that it occurs along the line of intersection
of the plate middle plane and the rod side surface (infinitely thin plate) that is at a dis-
tance h(t) from the rod central axis, i.e., along a line with the coordinates x;°(1) +

n;°(t)h(1). Displacement continuity conditions should be satisfied on the line of contact.
For the edge rod we have

ui(s Y lap = vilt, ho(1), 5. & Ly

Analogously for the inner rod
#i(S)ap = vile, k(1)) 5+ € Ly

Here s4 is the parametrization of the rod and plate lines of contact associated with the
parametrization 1 of the rod middle line Ly, Ly (and in agreement with it to the accuracy of
a sign for a zero thickness rod); the sign + refers to quantities on the right, and — on the
left of the line of rod contact with the plate (during a positive traversal); hy(t) > 0;
ho(t) < 0; dsy = [98(x, ht)]dT.

Using (1.5) to express the displacement v;(t, hy) of the stringer in terms of the dis-
placement of its central axis v;°(t1) and taking account of the expression of these latter in
terms of p; and m in the relationships (1.15) and (1.7), we obtain boundary conditions for
the inner reinforcement of an elastic plate by a finite-thickness elastic rod

812654 1) 1= wir (5) — vy (1, bz pP) = e (1, By p) 7 = 7652, (2.2)

Analogously for the edge stringer, we have condition (2.2) just for é;.(s.; u). Here p(e)
is the part of p generated by the external forces Ty, f; as well as the tip Fi(k), (k) ang

the concentrated forces and moments by means of (1.8), while p(P) is the part of p generated
by forces with which the plate acts on the stringer.

For the inner stringer

PP (1) = [ 03 (508 (3 b 1y s4) — 035 (52) & (5. A s ()] s
P (1) = [ = 05 (£.2) B (0, ) By (54} — 035 (52 O (1, o) oy (s ) A (1) B, (2.3)

where 0;(s3) are the stresses in the plate on the lines of contact with the rod. We should
set cij(s+) = { in these formulas for an edge stringer. We assume that M(t,; p(P)) = Filtg;
p(P)) = 0 for unclosed stringers [for closed stringers they are determined uniquely in p(P)
from conditions (1.3)]. Let us note that by virtue of (1.13), unknown constants c. (k) (5 =
1, 2, 3, k = 1-N), its own for each of the N stringers, enters into the variable vi(t, hs;
p(P)) in (2.2).

The boundary conditions (2.2) must be supplemented by the last two boundary conditions
in (1.1) for 1 = 1, [and on a closed stringer by the conditions (1.12)] equivalent to (1.11)
and (1.12) from which we obtain on each of the stringers

Fi(i 0™ + B = 0, 30 (20 ) 4 M =0, k=1 — A3 (2.4)



Fi(ef% p®) = — | o @de, (s p7) =

(k) (25)
Ty
I(EM ¥ 'E!ZM
P { ni(?)dbj Pt — \ m®™ () dt;
R0 o) i
1 1
e
UM PP
X0 : (2.6)
) - &
MM e [ mfyde | p@di— [ m (1) dt — M®Y — ag®)
t(k) 1( (k) '
1 1
— Py (e8) 2 [yt (o) — 2 ()] PR+ 287,

where t,(k) = ¢ (k) 4 o(k), Fi(k1) 4 i (k2) = M(k1) 4 M(k2) = 0 on each of the closed string=
ers.

Thus, if the plate along the part Ly. of the boundary 3D as well as on the internal con-
tours Lyt is reinforced by N elastic rods with longitudinal and bending stiffnesses differ-
ent from zero, then we arrive at a boundary value problem for Egs. (2.1) with boundary condi-
tions (2.2) on Ly+, Lp (and corresponding conditions on the rest of the boundary 8D\Lp-) as
well as by conditions (2.4) for the functions uj(x) and the constants Cj(k) (3 =1-3, k =
1-N). Here pi(P) = pi(P)(T; ), m(P) = m{P)(t; u) are calculated by using (2.3). If their
thicknesses are considered zero in the rod models under consideration, while the stiffnesses
are different from zero, then we must set hy = h- = 0, s. = —=s4 = 7 in (2.2) and (2.3) and

the edges Ly+ coincide and n(p) =

We now obtain the Green—Betti formula for the plane problem of elasticity theory for the
boundary conditions (2,2) and (2.3). Let B{T/(D, L) be a class of functions uj(x) satisfying
the Lamé equation (2.1) in D\L such that the set {viu(p(P)(u)), Fi(p(P)(u)), M(p(P)(u))} e
H(r)(L) constructed by them using (1.13), (1.15), (1.17), (2.3) the bilinear form for any
two functions uj, uy* from B{r)(D, L) is bounded \

2 . u®y™ (D) “\ witf 4 (g + w0 (el + uia)] dD (2.7)

and the Green—Betti formula holds in D

2 (u, u*yP (D) = 5 Uy (8) 65 (s; 1) 1y (s) ds,
ODULy - '
while regularity conditions [uj(x)| < Cy, uj j(x) = o(R™}), R? = x4 + » are still satisfied
for the infinite domain D.

Let us note that the imbedding in H(Y)(L) will be satisfied if 0ij(s; u) e Li(L), (||,
|X|) < = and (G, G;) # 0.

For uj, uj* € B(z)(p, Ly U Lp) we introduce the bilinear form <u, wt(Pr): = ¢,

u*>(P)(D)H° + <v%(u), D(u”‘)>(‘-') (L UL ). where the bilinear form <v?, vx05(r) i given by
the relationship (1.9). From (2.2), (2. 3). and. (2.5) we have the Green—Betti formula for a
reinforced plate

2y uy?) = [ § 8 (sumoy (s ny () ds +

Ly



+ ] b u o) s + j Bi (513 04 (5431) X

w—

X ny(s.)ds, 4 j. (s)ai; (s;u)ym; (s ds]+
D L.

.
+ 3 [n (% 02 ) P (5 07 (1) — @8

EU((H (W) n (W)U(H=P )]

We call the problem for (2.1) in which the elastic reinfotcement conditions (2.2) and
(2.3) are given on the inner contours Lyt and the part Ly. of the boundary, the forces

ails; uhnse) = gils), s & Ly, (2.9)

are given on the part Lp of the boundary, and the displacements

ui(s) = fs), se= Ly, (2.10)

on the part Ly, the problem (r ~ T — u). If the sections L, = 8 or Ly = 8 or conditions of
elastic one-dimensional reinforcement are given on the whole boundary 3D, then we arrive at
the problems, (r — T), (r — u), and (r), respectively,

Taking into account that <u, u>PY 2 @, we obtain the following uniqueness theorem in the
class B(r) (D, Lp U Ly) from (2.8). The solution of the problems (r) and (r = T) is unique
to the accuracy of a rigid shift ui(x) = vei(x) = Ci° + C3%;4%; (x € D) in a finite domain
D and to the accuracy of a rigid shift without rotation uyj(x) = vei(x) = ¢;° (x € D) in the
infinite domain D. The constants Cj(kU) = Cj° (j = 1-3, k = 1-N) in (1.13) for each connected
part of the reinforcement. The solution of the problems (r —u) and (r = T - u) is unique
in both the finite and the infinite domain D.

Let us note that sufficiency of the conditions (2.2)-(2.4), (2.9), (2.10) hence follows
for uniqueness of the determination of not only u; and v,y but also the censtants Ci(k) on
all rods {Cj(k°) = Cj” to VCi accuracy in the problems (r) and (r — T)].

Setting ul“(x) ¥ =05+ C391J j (x € D) in (2.8) (Cy = 0 for the infinite domain
D), and taking account of (2 6), we have that it is necessary for the solution of the prob-
lens (r) and (r - T) to exist in the class B(r) (D, Lp U Ly) that the principal vector, and

for a finite domain the principal moment of the external forces applied to the reinforced
body as well, be equal to zero.

Up to now we spoke in this section about the problem of the plane state of stress for a
plate reinforced by a rod (stringer). But it is easy to see that all the assertions obtained
here are also carried over to the plane strain problem for a cylinder reinforced by a cylin-
drical shell if A% is replaced by A in (1.1) and (2.7) and we set Hy = 1 in (2.8) and take
account of the remark at the end of Sec. 1.

3. STRESS SINGULARITY AT ANGULAR PQINTS AND ENDS OF STRINGERS
We assume in analyzing the singularities that the stresses near the singular points in
the plate satisfy the estimate oij(r) = 0(r™Y), ¥ < 1. Hence, taking account of (1.13),
(1.14), and (2.3), there.results that if the stiffnesses G(s) and G,(s) at the point s, under
investigation are not zero while the curvature y(s) is bounded, then [V4(s,, plp), m(P3)|,

[niﬁi(s*p(P), m(P))]'| < ». Then components with these terms can be carried over into the
right side of (2.2) and we arrive at the problems

I.‘,;(S,) = (T, ), s e Lﬁ-, uii(si) = L‘i(‘l‘, hi)! SL e ij;’ (3.1)

where the right sides vi(t, ht) are conditionally continuous while their derivatives are
bounded at s, and Holder- like in the left and right neighborhoods of s, if the functions
x(1), 9(t, he(1)), 1/6(x), 1/G.(1) possess this property. Furthermore we denote the param-
eters s+, ht by s and h 1f s, € L, respectively, T, = 7(s,). But conditions (3.1) are the



boundary conditions of the first boundary value problem (according to Kupradze) and the
stress singularity has been studied well in such problems (see [10, 11] and their bibliog-
raphy). Let w be an interior angle of the contour L. or Ly+ at the point s,. If 7 < w <
27, then the displacements and stresses in a partial local coordinate system (r, 8) with
origin at s, and angle & measured counterclockwise from the bisectrixz of w have the form

II .
wi(p, ) =Ci + 2 Ent™ @) p ™ 4 ul(8)p + ui (p,9),
. . (3.2)
UU p! 2 2I'LKm0{m) (9)9 " + Ug}' (e) + 0ij (Ps G)

Here the degrees of the stress singularities y;11(w), v,1I(w) € (0, 1) are roots of the

equations Ay (x, w, v111) = 0 and a,(-%, w, y,11) = 0, respectively, where the function A « (%,
w, )t = xsin[(y = Lul] + (v - 1)s1nm and the plane elasticity theory constant % = (A% +

3u)/(a* + y) for the plane state of stress and x = (A + 3u)/(A + u) for plane strain. The
stress intensity factors Ky depend on the geometry and given loads and should be determined

from the solution of the problem as a whole. The eigenfunctions ul(m)(a) 034 (m)(e) depend
only on the aperture angle and are written down explicitly u;*(p, 6), oy %(p, B), 015’ *(p,
8) > 0 as p > 0 while the functions uj"(8), ¢;°(8) bounded for n < w < 21 (as can be shown,

say, by using methods of [12]) have the form
up:=— (B, — B ctg w)cos 20 — (B, ctg @ + By)sin 20 — By’sin o, (3.3)
uf:= (B, — B, ctg ©)sin 20 — (B ctg © + By)sin 20 + By/sin o,
Gpp = —(By — By ctg ©) cos 20 — (B ctg © + By)sin 20 — 2B /{(x — 1) sin 0],
08y = (B, — B clg ) cos 20 + (B, ctgw + By)sin 20 — 28,/{(% — 1)sin 0},
009 := (B, — B, ctg ®)sin 20 — (B, ctg © + By)cos 26,

B, =} () €08 (0/2) + g (54) 5in (@/2), (3.4)
By = — Uit (5) €05 (0/2) — 3,4 (54) sin (0/2),

By =115 5 (5,]) S0 (0/2) — ity (54) 05 (0/2),
Byi= —up(s4)sin (0/2) + ugs(ss) cos (0/2),

U o (85) = Do (TSI, Uit (54) = [0 (T (540012

Here and henceforth, the notation is ¢%(s)i= @ (sx+ 0) + @ (s — 02, 04(sy) 1= 16 {55 + 0) — @ (s, —
0)]/2 for the function ¢(s). Hence it is seen that in the first problem the coefficients
are determined explicitly in terms of the tangential derivatives of the given boundary dis-
placenments around the angular point. Takmg account of (1.5) we obtain [u, oni A =—[h(1 +
xh)'lui,-ski] from the last condition (1.4) in the problem under consideration with given
elastie reinforcements, i.e.,

B, sin @ — B cos 0 = i1+ w14 (B, cos o — B, sin 0) — (3.5)
. . 3.5
— (/L + ) I (B cos @ + By sin w).

Therefore, B, can be expressed in terms of the remalnlng coefficients B,, By, B,, which, like
K. are not determined a pricri. Let us note that if h(n) = 0, in particular, if the rod
has zero thickness, then because of (3.5) the first parentheses in each of the expressions
(3.3) equal zero while if h = 0 and w = 7/2, then the tangential stress is og, = 0.

In the case when w = 7, i.e., s, is a point of smoothness of the contour, the asymptotic
(3.2) and (3.3) is replaced by the following
up (0.8) = Cp (0) +-{[— (# + 1) (nw)* By (Inp — 1) + K] sin 20 +
o Ky (o520 + 1) — B, ()1 0[(% + 1) cos 20 — % + 4} - B} p + uy (p, 6),
ug (0, 8) = Co(B) + {[— (% + 1) ()=t By (lnp — 1) 4 Ky ] {cos 20 | 1) —
— Ky, 5028 -+ By (an) =1 (% + 1)85in 20 + By} p + ug (o, 8),



Gpp = 2uf{[ — (% - 1) (aw)~1 By Inp + K 3] sin 26 -
+ Koo [cos 20 + 2/(m — )] + O (rrn) 2 By [~ (% + 1)cos 20 + 2] +
+2B, /(% — 1)} + a5,
agg = 2u{—[— (¥ — 1) (n) 2 By Inp + K] sin 20 +
+ Kog|— 08 20 + 2/(x — 1)] + 0 (=)~ By [(% + 1) cos 20 + 2] +
+ 2By(x — 1)} + ot (3.6)
Opg = 20{l— (e -+ 1) (mw)"1 By Inp + K] cos 20 + K, sin 26 -
+ 0(ma)1 B, (¢ + 1)sin20 — (%)L B,} -+ 6.

Here and henceforth Cy(8), Cg(8) is the constant shift C; in Cartesian coordinates expressed
in polar coordinates, for simplicity it is assumed that ﬁ(sﬁ) =0 for w =, then B, = 0 be-
cause of (3.5). The remaining coefficients By, just as the factors K,;, K;,, are generally
not determined a priori. However, if we use the notation xh(r) x(t) + 6(t)h(t)/[G,(t)8(r,

h)], then for w = 7 we find Fik;°(1) + xp(t)Mg = 6(c)u; ¢(s)ki(s) from (1.5) and (1.6). Then
taking account of (1 4) and (3 4)
By = [F;aikg (%) + 7 (T*)_-’l-f}: gfh (T) M (14) + 264 (1) By ]/[2€ (T4) ] (3.7)

where Fpi* and Mg* are concentrated external forces and moments at the point 7,. It is

hence seen that for ﬁ(s*) = 0 the logarithmic terms in (3.6) can occur when there is a con-
centrated longitudinal force or moment at the point of smoothness s, or a jump in the longi-
tudinal stiffness G or in x. If the lengitudinal stiffness and xp are continuous, the coef-
ficient B; of the logarithm is expressed explicitly in terms of the given concentrated force
and moment and equal zero if they are missing at 1,.

If the angle is 0 < w < 7 at the point s, then the asymptotics (3.2) and (3.3) hold with
(3.5) taken into account but for K; = K, = 0 terms with these exponents can be combined with

u; ¥, Gij* since YIII, YZII < 0. Therefore, the principle parts of the asymptotics are given
y (3.3).

If 6 =G, = », then from (1.5) and (1.6) it is easily seen that uj ¢ = c,nj. Then B, =
B, = Bycosw + Bysinw = 0 and in place of (3.3) for w # 7 we cbtain upd = Uppo = ope° =0,
ug® = By/sinw. For w = 7 it is necessary to substitute relationships B, = B, = B, = 0 in
the asymptotic (3.6).

The asymptotics (3.2), (3.3), (3.6) indeed refer to an analysis of the tip domains of
internal stringers with nonzero thickness if it is assumed that the stringer model being used
is applicable at these points alse, Then w are the angles of the local geometry of the tip
domains. If the internal stringer thickness in the tip domain equals zero then w = 27, y; =
Y, = 1/2 in this domain. As before the asymptotics of the displacements and stresses have
the form (3.2) for w = 27 but the smallest terms uy®, 04;° will here differ from (3.3). If

s, is the peint where contact between the edge stringer and the plate terminates and, more-
over, displacements are given on the boundary, then interchanges of the type of boundary con-
ditions of the asymptotics (3.2)-(3.4), (3.6), (3.7) are conserved completely at this point.

By analogy with the above, it is easy to see that at the point of interchange of the
type of boundary conditions occurring at the end of the edge stringer when forces are later
given on the boundary (cenditions of the second problem), the asymptotic will be the same as
in the neighborhood of the point of interchange of the type of boundary conditions of the
first and second problems (see [10, 11]) outside the dependence on the stiffness, thickness,
and curvature of the stringer if the stiffnesses are G(s,), Gi(s,) # 0 while x(s,) # = at
the points s, being investigated.

Therefore, in problems with one-dimensional elastic reinforcements having nonzero longi-
tudinal and bending stiffnesses and bounded curvature, the principal terms of the asymptotics,
-and particularly, the degrees of the singularities will be the same as in the problem with

given displacements. The influence of the stiffnesses and curvature affects only the values
of the coefficients of this asymptetic.

Let us note that the case when G(s), G,(s) + 0, x(s) + «» as s + 5% can be investigated
by methods similar to those used in [13, 14].



For rods (shells) of nonzero thickness in zones with large curvature, including in the
neighborhood of angular point of the axis, there occurs an intersection of the normals to it
in the bulk of the rod. For a correct formulation of the problem it is necessary to refine
the theory of rods in such zones. In particular, these zones can be considered rigid inserts,
i.e., G =G, = @ can be set there. To remove given and contact forces distributed over the
rigid zone on the axis, (1.8) and (2.3) can be replaced by any relationships yielding their
principal vecter and moment in this zone. Then the results obtained above are conserved even
for such cases.
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