42 research outputs found

    Detecting synchronization of self-sustained oscillators by external driving with varying frequency

    Full text link
    We propose a method for detecting the presence of synchronization of self-sustained oscillator by external driving with linearly varying frequency. The method is based on a continuous wavelet transform of the signals of self-sustained oscillator and external force and allows one to distinguish the case of true synchronization from the case of spurious synchronization caused by linear mixing of the signals. We apply the method to driven van der Pol oscillator and to experimental data of human heart rate variability and respiration.Comment: 9 pages, 7 figure

    Detection of synchronization from univariate data using wavelet transform

    Full text link
    A method is proposed for detecting from univariate data the presence of synchronization of a self-sustained oscillator by external driving with varying frequency. The method is based on the analysis of difference between the oscillator instantaneous phases calculated using continuous wavelet transform at time moments shifted by a certain constant value relative to each other. We apply our method to a driven asymmetric van der Pol oscillator, experimental data from a driven electronic oscillator with delayed feedback and human heartbeat time series. In the latest case, the analysis of the heart rate variability data reveals synchronous regimes between the respiration and slow oscillations in blood pressure.Comment: 10 pages, 9 figure

    Simulating Dynamics of Circulation in the Awake State and Different Stages of Sleep Using Non-autonomous Mathematical Model With Time Delay

    Get PDF
    We propose a mathematical model of the human cardiovascular system. The model allows one to simulate the main heart rate, its variability under the influence of the autonomic nervous system, breathing process, and oscillations of blood pressure. For the first time, the model takes into account the activity of the cerebral cortex structures that modulate the autonomic control loops of blood circulation in the awake state and in various stages of sleep. The adequacy of the model is demonstrated by comparing its time series with experimental records of healthy subjects in the SIESTA database. The proposed model can become a useful tool for studying the characteristics of the cardiovascular system dynamics during sleep

    Galactic Binary Gravitational Wave Noise within LISA Frequency Band

    Get PDF
    Gravitational wave noise associated with unresolved binary stars in the Galaxy is studied with the special aim of determining the upper frequency at which it stops to contribute at the rms noise level of the proposed space-born interferometer (LISA). The upper limit to this background is derived from the statistics of SN Ia explosions, part of which can be triggered by binary white dwarf coalescences. The upper limiting frequency at which binary stochastic noise crosses LISA rms sensitivity is found to lie within the range 0.03-0.07 Hz, depending on the galactic binary white dwarf coalescence rate. To be reliably detectable by LISA, the energy density of relic cosmological background per logarithmic frequency interval should be Omega_{GW}h_{100}^2>10^{-8} at f>0.03 Hz.Comment: 16 pages with 1 eps figure, aasms4.sty, to appear in the ApJ vol. 494 February 20, 1998 issu

    Protestant women in the late Soviet era: gender, authority, and dissent

    Get PDF
    At the peak of the anti-religious campaigns under Nikita Khrushchev, communist propaganda depicted women believers as either naïve dupes, tricked by the clergy, or as depraved fanatics; the Protestant “sektantka” (female sectarian) was a particularly prominent folk-devil. In fact, as this article shows, women’s position within Protestant communities was far more complex than either of these mythical figures would have one believe. The authors explore four important, but contested, female roles: women as leaders of worship, particularly in remote congregations where female believers vastly outnumbered their male counterparts; women as unofficial prophetesses, primarily within Pentecostal groups; women as mothers, replenishing congregations through high birth rates and commitment to their children’s religious upbringing; and women as political actors in the defence of religious rights. Using a wide range of sources, which include reports written by state officials, articles in the church journal, letters from church members to their ecclesiastical leaders in Moscow, samizdat texts, and oral history accounts, the authors probe women’s relationship with authority, in terms of both the authority of the (male) ministry within the church, and the authority of the Soviet state

    Gravitational Wave Astronomy: in Anticipation of First Sources to be Detected

    Get PDF
    The first generation of long-baseline laser interferometric detectors of gravitational waves will start collecting data in 2001-2003. We carefully analyse their planned performance and compare it with the expected strengths of astrophysical sources. The scientific importance of the anticipated discovery of various gravitatinal wave signals and the reliability of theoretical predictions are taken into account in our analysis. We try to be conservative both in evaluating the theoretical uncertainties about a source and the prospects of its detection. After having considered many possible sources, we place our emphasis on (1) inspiraling binaries consisting of stellar mass black holes and (2) relic gravitational waves. We draw the conclusion that inspiraling binary black holes are likely to be detected first by the initial ground-based interferometers. We estimate that the initial interferometers will see 2-3 events per year from black hole binaries with component masses 10-15M_\odot, with a signal-to-noise ratio of around 2-3, in each of a network of detectors consisting of GEO, VIRGO and the two LIGOs. It appears that other possible sources, including coalescing neutron stars, are unlikely to be detected by the initial instruments. We also argue that relic gravitational waves may be discovered by the space-based interferometers in the frequency interval 2x10^{-3}-10^{-2} Hz, at the signal-to-noise ratio level around 3.Comment: latex, 100 pages, including 20 postscript figures. Small typos corrected, references adde

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitational waves at distances 5 times further away than possible with Advanced LIGO, or at greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby Universe, as well as observing the Universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor
    corecore