32 research outputs found

    The Association between Conduct Problems and the Initiation and Progression of Marijuana Use during Adolescence: A Genetic Analysis across Time

    Get PDF
    The present study used a prospective, longitudinal design to investigate genetic and environmental influences on the association between earlier conduct problems and the initiation and progression of marijuana use during adolescence. Parent- and teacher-reported conduct problems assessed at Time 1 (1996) and self-reported marijuana use assessed at Time 2 (2004) were available for 1088 adolescent twin pairs participating in the Cardiff Study of All Wales and North West of England Twins (CaStANET). Using a novel approach to the modeling of initiation and progression dimensions in substance use, findings suggested that the initiation of marijuana use in adolescence was influenced by genetic, common and unique environmental factors. The progression (or frequency) of marijuana use was influenced by genetic and unique environmental factors. Findings for conduct problems indicated that while the presence or absence of conduct problems was largely heritable, the relative severity of conduct problems appeared to be more strongly environmentally influenced. Multivariate model fitting indicated that conduct problems in childhood and early adolescence made a small but significant contribution to the risk for marijuana use 8 years later

    Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture

    Get PDF
    The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition

    Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease.

    Get PDF
    DNA double-strand breaks (DSBs) are potent sources of genome instability. While there is considerable genetic and molecular information about the disposition of direct DSBs and breaks that arise during replication, relatively little is known about DSBs derived during processing of single-strand lesions, especially for the case of single-strand breaks (SSBs) with 3'-blocked termini generated in vivo. Using our recently developed assay for detecting end-processing at random DSBs in budding yeast, we show that single-strand lesions produced by the alkylating agent methyl methanesulfonate (MMS) can generate DSBs in G2-arrested cells, i.e., S-phase independent. These derived DSBs were observed in apn1/2 endonuclease mutants and resulted from aborted base excision repair leading to 3' blocked single-strand breaks following the creation of abasic (AP) sites. DSB formation was reduced by additional mutations that affect processing of AP sites including ntg1, ntg2, and, unexpectedly, ogg1, or by a lack of AP sites due to deletion of the MAG1 glycosylase gene. Similar to direct DSBs, the derived DSBs were subject to MRX (Mre11, Rad50, Xrs2)-determined resection and relied upon the recombinational repair genes RAD51, RAD52, as well as on the MCD1 cohesin gene, for repair. In addition, we identified a novel DNA intermediate, detected as slow-moving chromosomal DNA (SMD) in pulsed field electrophoresis gels shortly after MMS exposure in apn1/2 cells. The SMD requires nicked AP sites, but is independent of resection/recombination processes, suggesting that it is a novel structure generated during processing of 3'-blocked SSBs. Collectively, this study provides new insights into the potential consequences of alkylation base damage in vivo, including creation of novel structures as well as generation and repair of DSBs in nonreplicating cells

    Genome-wide studies of verbal declarative memory in nondemented older people: the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium

    Get PDF
    Memory performance in older persons can reflect genetic influences on cognitive function and dementing processes. We aimed to identify genetic contributions to verbal declarative memory in a community setting.; We conducted genome-wide association studies for paragraph or word list delayed recall in 19 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, comprising 29,076 dementia- and stroke-free individuals of European descent, aged ≥45 years. Replication of suggestive associations (p < 5 × 10(-6)) was sought in 10,617 participants of European descent, 3811 African-Americans, and 1561 young adults.; rs4420638, near APOE, was associated with poorer delayed recall performance in discovery (p = 5.57 × 10(-10)) and replication cohorts (p = 5.65 × 10(-8)). This association was stronger for paragraph than word list delayed recall and in the oldest persons. Two associations with specific tests, in subsets of the total sample, reached genome-wide significance in combined analyses of discovery and replication (rs11074779 [HS3ST4], p = 3.11 × 10(-8), and rs6813517 [SPOCK3], p = 2.58 × 10(-8)) near genes involved in immune response. A genetic score combining 58 independent suggestive memory risk variants was associated with increasing Alzheimer disease pathology in 725 autopsy samples. Association of memory risk loci with gene expression in 138 human hippocampus samples showed cis-associations with WDR48 and CLDN5, both related to ubiquitin metabolism.; This largest study to date exploring the genetics of memory function in ~40,000 older individuals revealed genome-wide associations and suggested an involvement of immune and ubiquitin pathways
    corecore